Metamath Proof Explorer


Theorem 1dimN

Description: An atom is covered by a height-2 element (1-dimensional line). (Contributed by NM, 3-May-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 2dim.j ˙ = join K
2dim.c C = K
2dim.a A = Atoms K
Assertion 1dimN K HL P A q A P C P ˙ q

Proof

Step Hyp Ref Expression
1 2dim.j ˙ = join K
2 2dim.c C = K
3 2dim.a A = Atoms K
4 1 2 3 2dim K HL P A q A r A P C P ˙ q P ˙ q C P ˙ q ˙ r
5 r19.42v r A P C P ˙ q P ˙ q C P ˙ q ˙ r P C P ˙ q r A P ˙ q C P ˙ q ˙ r
6 5 simplbi r A P C P ˙ q P ˙ q C P ˙ q ˙ r P C P ˙ q
7 6 reximi q A r A P C P ˙ q P ˙ q C P ˙ q ˙ r q A P C P ˙ q
8 4 7 syl K HL P A q A P C P ˙ q