Metamath Proof Explorer


Theorem 1elcpmat

Description: The identity of the ring of all polynomial matrices over the ring R is a constant polynomial matrix. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S = N ConstPolyMat R
cpmatsrngpmat.p P = Poly 1 R
cpmatsrngpmat.c C = N Mat P
Assertion 1elcpmat N Fin R Ring 1 C S

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S = N ConstPolyMat R
2 cpmatsrngpmat.p P = Poly 1 R
3 cpmatsrngpmat.c C = N Mat P
4 eqid Base R = Base R
5 eqid 1 R = 1 R
6 4 5 ringidcl R Ring 1 R Base R
7 6 ancli R Ring R Ring 1 R Base R
8 7 adantl N Fin R Ring R Ring 1 R Base R
9 8 ad2antrl i = j N Fin R Ring i N j N R Ring 1 R Base R
10 eqid 0 R = 0 R
11 eqid Base P = Base P
12 eqid algSc P = algSc P
13 4 10 2 11 12 cply1coe0 R Ring 1 R Base R n coe 1 algSc P 1 R n = 0 R
14 9 13 syl i = j N Fin R Ring i N j N n coe 1 algSc P 1 R n = 0 R
15 iftrue i = j if i = j algSc P 1 R algSc P 0 R = algSc P 1 R
16 15 fveq2d i = j coe 1 if i = j algSc P 1 R algSc P 0 R = coe 1 algSc P 1 R
17 16 fveq1d i = j coe 1 if i = j algSc P 1 R algSc P 0 R n = coe 1 algSc P 1 R n
18 17 eqeq1d i = j coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R coe 1 algSc P 1 R n = 0 R
19 18 ralbidv i = j n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R n coe 1 algSc P 1 R n = 0 R
20 19 adantr i = j N Fin R Ring i N j N n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R n coe 1 algSc P 1 R n = 0 R
21 14 20 mpbird i = j N Fin R Ring i N j N n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R
22 4 10 ring0cl R Ring 0 R Base R
23 22 ancli R Ring R Ring 0 R Base R
24 23 adantl N Fin R Ring R Ring 0 R Base R
25 4 10 2 11 12 cply1coe0 R Ring 0 R Base R n coe 1 algSc P 0 R n = 0 R
26 24 25 syl N Fin R Ring n coe 1 algSc P 0 R n = 0 R
27 26 ad2antrl ¬ i = j N Fin R Ring i N j N n coe 1 algSc P 0 R n = 0 R
28 iffalse ¬ i = j if i = j algSc P 1 R algSc P 0 R = algSc P 0 R
29 28 adantr ¬ i = j N Fin R Ring i N j N if i = j algSc P 1 R algSc P 0 R = algSc P 0 R
30 29 fveq2d ¬ i = j N Fin R Ring i N j N coe 1 if i = j algSc P 1 R algSc P 0 R = coe 1 algSc P 0 R
31 30 fveq1d ¬ i = j N Fin R Ring i N j N coe 1 if i = j algSc P 1 R algSc P 0 R n = coe 1 algSc P 0 R n
32 31 eqeq1d ¬ i = j N Fin R Ring i N j N coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R coe 1 algSc P 0 R n = 0 R
33 32 ralbidv ¬ i = j N Fin R Ring i N j N n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R n coe 1 algSc P 0 R n = 0 R
34 27 33 mpbird ¬ i = j N Fin R Ring i N j N n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R
35 21 34 pm2.61ian N Fin R Ring i N j N n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R
36 35 ralrimivva N Fin R Ring i N j N n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R
37 simpll N Fin R Ring i N j N N Fin
38 simplr N Fin R Ring i N j N R Ring
39 simprl N Fin R Ring i N j N i N
40 simprr N Fin R Ring i N j N j N
41 eqid 1 C = 1 C
42 2 3 12 10 5 37 38 39 40 41 pmat1ovscd N Fin R Ring i N j N i 1 C j = if i = j algSc P 1 R algSc P 0 R
43 42 fveq2d N Fin R Ring i N j N coe 1 i 1 C j = coe 1 if i = j algSc P 1 R algSc P 0 R
44 43 fveq1d N Fin R Ring i N j N coe 1 i 1 C j n = coe 1 if i = j algSc P 1 R algSc P 0 R n
45 44 eqeq1d N Fin R Ring i N j N coe 1 i 1 C j n = 0 R coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R
46 45 ralbidv N Fin R Ring i N j N n coe 1 i 1 C j n = 0 R n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R
47 46 2ralbidva N Fin R Ring i N j N n coe 1 i 1 C j n = 0 R i N j N n coe 1 if i = j algSc P 1 R algSc P 0 R n = 0 R
48 36 47 mpbird N Fin R Ring i N j N n coe 1 i 1 C j n = 0 R
49 2 3 pmatring N Fin R Ring C Ring
50 eqid Base C = Base C
51 50 41 ringidcl C Ring 1 C Base C
52 49 51 syl N Fin R Ring 1 C Base C
53 1 2 3 50 cpmatel N Fin R Ring 1 C Base C 1 C S i N j N n coe 1 i 1 C j n = 0 R
54 52 53 mpd3an3 N Fin R Ring 1 C S i N j N n coe 1 i 1 C j n = 0 R
55 48 54 mpbird N Fin R Ring 1 C S