Step |
Hyp |
Ref |
Expression |
1 |
|
cpmatsrngpmat.s |
|
2 |
|
cpmatsrngpmat.p |
|
3 |
|
cpmatsrngpmat.c |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5
|
ringidcl |
|
7 |
6
|
ancli |
|
8 |
7
|
adantl |
|
9 |
8
|
ad2antrl |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
4 10 2 11 12
|
cply1coe0 |
|
14 |
9 13
|
syl |
|
15 |
|
iftrue |
|
16 |
15
|
fveq2d |
|
17 |
16
|
fveq1d |
|
18 |
17
|
eqeq1d |
|
19 |
18
|
ralbidv |
|
20 |
19
|
adantr |
|
21 |
14 20
|
mpbird |
|
22 |
4 10
|
ring0cl |
|
23 |
22
|
ancli |
|
24 |
23
|
adantl |
|
25 |
4 10 2 11 12
|
cply1coe0 |
|
26 |
24 25
|
syl |
|
27 |
26
|
ad2antrl |
|
28 |
|
iffalse |
|
29 |
28
|
adantr |
|
30 |
29
|
fveq2d |
|
31 |
30
|
fveq1d |
|
32 |
31
|
eqeq1d |
|
33 |
32
|
ralbidv |
|
34 |
27 33
|
mpbird |
|
35 |
21 34
|
pm2.61ian |
|
36 |
35
|
ralrimivva |
|
37 |
|
simpll |
|
38 |
|
simplr |
|
39 |
|
simprl |
|
40 |
|
simprr |
|
41 |
|
eqid |
|
42 |
2 3 12 10 5 37 38 39 40 41
|
pmat1ovscd |
|
43 |
42
|
fveq2d |
|
44 |
43
|
fveq1d |
|
45 |
44
|
eqeq1d |
|
46 |
45
|
ralbidv |
|
47 |
46
|
2ralbidva |
|
48 |
36 47
|
mpbird |
|
49 |
2 3
|
pmatring |
|
50 |
|
eqid |
|
51 |
50 41
|
ringidcl |
|
52 |
49 51
|
syl |
|
53 |
1 2 3 50
|
cpmatel |
|
54 |
52 53
|
mpd3an3 |
|
55 |
48 54
|
mpbird |
|