Metamath Proof Explorer


Theorem 1elfz0hash

Description: 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020)

Ref Expression
Assertion 1elfz0hash A Fin A 1 0 A

Proof

Step Hyp Ref Expression
1 1nn0 1 0
2 1 a1i A Fin A 1 0
3 hashcl A Fin A 0
4 3 adantr A Fin A A 0
5 hashge1 A Fin A 1 A
6 elfz2nn0 1 0 A 1 0 A 0 1 A
7 2 4 5 6 syl3anbrc A Fin A 1 0 A