Metamath Proof Explorer


Theorem 1eluzge0

Description: 1 is an integer greater than or equal to 0. (Contributed by Alexander van der Vekens, 8-Jun-2018)

Ref Expression
Assertion 1eluzge0 1 0

Proof

Step Hyp Ref Expression
1 0z 0
2 1z 1
3 0le1 0 1
4 eluz2 1 0 0 1 0 1
5 1 2 3 4 mpbir3an 1 0