Metamath Proof Explorer


Theorem 1exp

Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion 1exp N 1 N = 1

Proof

Step Hyp Ref Expression
1 1ex 1 V
2 1 snid 1 1
3 ax-1ne0 1 0
4 ax-1cn 1
5 snssi 1 1
6 4 5 ax-mp 1
7 elsni x 1 x = 1
8 elsni y 1 y = 1
9 oveq12 x = 1 y = 1 x y = 1 1
10 1t1e1 1 1 = 1
11 9 10 eqtrdi x = 1 y = 1 x y = 1
12 7 8 11 syl2an x 1 y 1 x y = 1
13 ovex x y V
14 13 elsn x y 1 x y = 1
15 12 14 sylibr x 1 y 1 x y 1
16 7 oveq2d x 1 1 x = 1 1
17 1div1e1 1 1 = 1
18 16 17 eqtrdi x 1 1 x = 1
19 ovex 1 x V
20 19 elsn 1 x 1 1 x = 1
21 18 20 sylibr x 1 1 x 1
22 21 adantr x 1 x 0 1 x 1
23 6 15 2 22 expcl2lem 1 1 1 0 N 1 N 1
24 2 3 23 mp3an12 N 1 N 1
25 elsni 1 N 1 1 N = 1
26 24 25 syl N 1 N = 1