Metamath Proof Explorer


Theorem 1fv

Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Proof shortened by AV, 18-Apr-2021)

Ref Expression
Assertion 1fv N V P = 0 N P : 0 0 V P 0 = N

Proof

Step Hyp Ref Expression
1 0z 0
2 1 a1i N V 0
3 id N V N V
4 2 3 fsnd N V 0 N : 0 V
5 fvsng 0 N V 0 N 0 = N
6 1 5 mpan N V 0 N 0 = N
7 4 6 jca N V 0 N : 0 V 0 N 0 = N
8 7 adantr N V P = 0 N 0 N : 0 V 0 N 0 = N
9 id P = 0 N P = 0 N
10 fz0sn 0 0 = 0
11 10 a1i P = 0 N 0 0 = 0
12 9 11 feq12d P = 0 N P : 0 0 V 0 N : 0 V
13 fveq1 P = 0 N P 0 = 0 N 0
14 13 eqeq1d P = 0 N P 0 = N 0 N 0 = N
15 12 14 anbi12d P = 0 N P : 0 0 V P 0 = N 0 N : 0 V 0 N 0 = N
16 15 adantl N V P = 0 N P : 0 0 V P 0 = N 0 N : 0 V 0 N 0 = N
17 8 16 mpbird N V P = 0 N P : 0 0 V P 0 = N