Metamath Proof Explorer


Theorem 1fzopredsuc

Description: Join 0 and a successor to the beginning and the end of an open integer interval starting at 1. (Contributed by AV, 14-Jul-2020)

Ref Expression
Assertion 1fzopredsuc N 0 0 N = 0 1 ..^ N N

Proof

Step Hyp Ref Expression
1 elnn0uz N 0 N 0
2 fzopredsuc N 0 0 N = 0 0 + 1 ..^ N N
3 0p1e1 0 + 1 = 1
4 3 oveq1i 0 + 1 ..^ N = 1 ..^ N
5 4 uneq2i 0 0 + 1 ..^ N = 0 1 ..^ N
6 5 uneq1i 0 0 + 1 ..^ N N = 0 1 ..^ N N
7 2 6 eqtrdi N 0 0 N = 0 1 ..^ N N
8 1 7 sylbi N 0 0 N = 0 1 ..^ N N