Metamath Proof Explorer


Theorem 1hevtxdg0

Description: The vertex degree of vertex D in a graph G with only one hyperedge E is 0 if D is not incident with the edge E . (Contributed by AV, 2-Mar-2021)

Ref Expression
Hypotheses 1hevtxdg0.i φ iEdg G = A E
1hevtxdg0.v φ Vtx G = V
1hevtxdg0.a φ A X
1hevtxdg0.d φ D V
1hevtxdg0.e φ E Y
1hevtxdg0.n φ D E
Assertion 1hevtxdg0 φ VtxDeg G D = 0

Proof

Step Hyp Ref Expression
1 1hevtxdg0.i φ iEdg G = A E
2 1hevtxdg0.v φ Vtx G = V
3 1hevtxdg0.a φ A X
4 1hevtxdg0.d φ D V
5 1hevtxdg0.e φ E Y
6 1hevtxdg0.n φ D E
7 df-nel D E ¬ D E
8 6 7 sylib φ ¬ D E
9 1 fveq1d φ iEdg G A = A E A
10 fvsng A X E Y A E A = E
11 3 5 10 syl2anc φ A E A = E
12 9 11 eqtrd φ iEdg G A = E
13 8 12 neleqtrrd φ ¬ D iEdg G A
14 fveq2 x = A iEdg G x = iEdg G A
15 14 eleq2d x = A D iEdg G x D iEdg G A
16 15 notbid x = A ¬ D iEdg G x ¬ D iEdg G A
17 16 ralsng A X x A ¬ D iEdg G x ¬ D iEdg G A
18 3 17 syl φ x A ¬ D iEdg G x ¬ D iEdg G A
19 13 18 mpbird φ x A ¬ D iEdg G x
20 1 dmeqd φ dom iEdg G = dom A E
21 dmsnopg E Y dom A E = A
22 5 21 syl φ dom A E = A
23 20 22 eqtrd φ dom iEdg G = A
24 23 raleqdv φ x dom iEdg G ¬ D iEdg G x x A ¬ D iEdg G x
25 19 24 mpbird φ x dom iEdg G ¬ D iEdg G x
26 ralnex x dom iEdg G ¬ D iEdg G x ¬ x dom iEdg G D iEdg G x
27 25 26 sylib φ ¬ x dom iEdg G D iEdg G x
28 2 eleq2d φ D Vtx G D V
29 4 28 mpbird φ D Vtx G
30 eqid Vtx G = Vtx G
31 eqid iEdg G = iEdg G
32 eqid VtxDeg G = VtxDeg G
33 30 31 32 vtxd0nedgb D Vtx G VtxDeg G D = 0 ¬ x dom iEdg G D iEdg G x
34 29 33 syl φ VtxDeg G D = 0 ¬ x dom iEdg G D iEdg G x
35 27 34 mpbird φ VtxDeg G D = 0