Step |
Hyp |
Ref |
Expression |
1 |
|
1hevtxdg0.i |
|
2 |
|
1hevtxdg0.v |
|
3 |
|
1hevtxdg0.a |
|
4 |
|
1hevtxdg0.d |
|
5 |
|
1hevtxdg1.e |
|
6 |
|
1hevtxdg1.n |
|
7 |
|
1hevtxdg1.l |
|
8 |
1
|
dmeqd |
|
9 |
|
dmsnopg |
|
10 |
5 9
|
syl |
|
11 |
8 10
|
eqtrd |
|
12 |
|
fveq2 |
|
13 |
12
|
breq2d |
|
14 |
2
|
pweqd |
|
15 |
5 14
|
eleqtrrd |
|
16 |
13 15 7
|
elrabd |
|
17 |
3 16
|
fsnd |
|
18 |
17
|
adantr |
|
19 |
1
|
adantr |
|
20 |
|
simpr |
|
21 |
19 20
|
feq12d |
|
22 |
18 21
|
mpbird |
|
23 |
4 2
|
eleqtrrd |
|
24 |
23
|
adantr |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
25 26 27 28
|
vtxdlfgrval |
|
30 |
22 24 29
|
syl2anc |
|
31 |
|
rabeq |
|
32 |
31
|
adantl |
|
33 |
32
|
fveq2d |
|
34 |
|
fveq2 |
|
35 |
34
|
eleq2d |
|
36 |
35
|
rabsnif |
|
37 |
1
|
fveq1d |
|
38 |
|
fvsng |
|
39 |
3 5 38
|
syl2anc |
|
40 |
37 39
|
eqtrd |
|
41 |
6 40
|
eleqtrrd |
|
42 |
41
|
iftrued |
|
43 |
36 42
|
eqtrid |
|
44 |
43
|
fveq2d |
|
45 |
|
hashsng |
|
46 |
3 45
|
syl |
|
47 |
44 46
|
eqtrd |
|
48 |
47
|
adantr |
|
49 |
30 33 48
|
3eqtrd |
|
50 |
11 49
|
mpdan |
|