Metamath Proof Explorer


Theorem 1idpr

Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of Gleason p. 124. (Contributed by NM, 2-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion 1idpr A 𝑷 A 𝑷 1 𝑷 = A

Proof

Step Hyp Ref Expression
1 df-rex g 1 𝑷 x = f 𝑸 g g g 1 𝑷 x = f 𝑸 g
2 elprnq A 𝑷 f A f 𝑸
3 breq1 x = f 𝑸 g x < 𝑸 f f 𝑸 g < 𝑸 f
4 df-1p 1 𝑷 = g | g < 𝑸 1 𝑸
5 4 abeq2i g 1 𝑷 g < 𝑸 1 𝑸
6 ltmnq f 𝑸 g < 𝑸 1 𝑸 f 𝑸 g < 𝑸 f 𝑸 1 𝑸
7 mulidnq f 𝑸 f 𝑸 1 𝑸 = f
8 7 breq2d f 𝑸 f 𝑸 g < 𝑸 f 𝑸 1 𝑸 f 𝑸 g < 𝑸 f
9 6 8 bitrd f 𝑸 g < 𝑸 1 𝑸 f 𝑸 g < 𝑸 f
10 5 9 bitr2id f 𝑸 f 𝑸 g < 𝑸 f g 1 𝑷
11 3 10 sylan9bbr f 𝑸 x = f 𝑸 g x < 𝑸 f g 1 𝑷
12 2 11 sylan A 𝑷 f A x = f 𝑸 g x < 𝑸 f g 1 𝑷
13 12 ex A 𝑷 f A x = f 𝑸 g x < 𝑸 f g 1 𝑷
14 13 pm5.32rd A 𝑷 f A x < 𝑸 f x = f 𝑸 g g 1 𝑷 x = f 𝑸 g
15 14 exbidv A 𝑷 f A g x < 𝑸 f x = f 𝑸 g g g 1 𝑷 x = f 𝑸 g
16 19.42v g x < 𝑸 f x = f 𝑸 g x < 𝑸 f g x = f 𝑸 g
17 15 16 bitr3di A 𝑷 f A g g 1 𝑷 x = f 𝑸 g x < 𝑸 f g x = f 𝑸 g
18 1 17 syl5bb A 𝑷 f A g 1 𝑷 x = f 𝑸 g x < 𝑸 f g x = f 𝑸 g
19 18 rexbidva A 𝑷 f A g 1 𝑷 x = f 𝑸 g f A x < 𝑸 f g x = f 𝑸 g
20 1pr 1 𝑷 𝑷
21 df-mp 𝑷 = y 𝑷 , z 𝑷 w | u y v z w = u 𝑸 v
22 mulclnq u 𝑸 v 𝑸 u 𝑸 v 𝑸
23 21 22 genpelv A 𝑷 1 𝑷 𝑷 x A 𝑷 1 𝑷 f A g 1 𝑷 x = f 𝑸 g
24 20 23 mpan2 A 𝑷 x A 𝑷 1 𝑷 f A g 1 𝑷 x = f 𝑸 g
25 prnmax A 𝑷 x A f A x < 𝑸 f
26 ltrelnq < 𝑸 𝑸 × 𝑸
27 26 brel x < 𝑸 f x 𝑸 f 𝑸
28 vex f V
29 vex x V
30 fvex * 𝑸 f V
31 mulcomnq y 𝑸 z = z 𝑸 y
32 mulassnq y 𝑸 z 𝑸 w = y 𝑸 z 𝑸 w
33 28 29 30 31 32 caov12 f 𝑸 x 𝑸 * 𝑸 f = x 𝑸 f 𝑸 * 𝑸 f
34 recidnq f 𝑸 f 𝑸 * 𝑸 f = 1 𝑸
35 34 oveq2d f 𝑸 x 𝑸 f 𝑸 * 𝑸 f = x 𝑸 1 𝑸
36 33 35 eqtrid f 𝑸 f 𝑸 x 𝑸 * 𝑸 f = x 𝑸 1 𝑸
37 mulidnq x 𝑸 x 𝑸 1 𝑸 = x
38 36 37 sylan9eqr x 𝑸 f 𝑸 f 𝑸 x 𝑸 * 𝑸 f = x
39 38 eqcomd x 𝑸 f 𝑸 x = f 𝑸 x 𝑸 * 𝑸 f
40 ovex x 𝑸 * 𝑸 f V
41 oveq2 g = x 𝑸 * 𝑸 f f 𝑸 g = f 𝑸 x 𝑸 * 𝑸 f
42 41 eqeq2d g = x 𝑸 * 𝑸 f x = f 𝑸 g x = f 𝑸 x 𝑸 * 𝑸 f
43 40 42 spcev x = f 𝑸 x 𝑸 * 𝑸 f g x = f 𝑸 g
44 27 39 43 3syl x < 𝑸 f g x = f 𝑸 g
45 44 a1i f A x < 𝑸 f g x = f 𝑸 g
46 45 ancld f A x < 𝑸 f x < 𝑸 f g x = f 𝑸 g
47 46 reximia f A x < 𝑸 f f A x < 𝑸 f g x = f 𝑸 g
48 25 47 syl A 𝑷 x A f A x < 𝑸 f g x = f 𝑸 g
49 48 ex A 𝑷 x A f A x < 𝑸 f g x = f 𝑸 g
50 prcdnq A 𝑷 f A x < 𝑸 f x A
51 50 adantrd A 𝑷 f A x < 𝑸 f g x = f 𝑸 g x A
52 51 rexlimdva A 𝑷 f A x < 𝑸 f g x = f 𝑸 g x A
53 49 52 impbid A 𝑷 x A f A x < 𝑸 f g x = f 𝑸 g
54 19 24 53 3bitr4d A 𝑷 x A 𝑷 1 𝑷 x A
55 54 eqrdv A 𝑷 A 𝑷 1 𝑷 = A