Metamath Proof Explorer


Theorem 1idssfct

Description: The positive divisors of a positive integer include 1 and itself. (Contributed by Paul Chapman, 22-Jun-2011)

Ref Expression
Assertion 1idssfct N 1 N n | n N

Proof

Step Hyp Ref Expression
1 1nn 1
2 nnz N N
3 1dvds N 1 N
4 2 3 syl N 1 N
5 breq1 n = 1 n N 1 N
6 5 elrab 1 n | n N 1 1 N
7 6 biimpri 1 1 N 1 n | n N
8 1 4 7 sylancr N 1 n | n N
9 iddvds N N N
10 2 9 syl N N N
11 breq1 n = N n N N N
12 11 elrab N n | n N N N N
13 12 biimpri N N N N n | n N
14 10 13 mpdan N N n | n N
15 8 14 prssd N 1 N n | n N