Metamath Proof Explorer


Theorem 1loopgredg

Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop is a singleton of a singleton. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v φ Vtx G = V
1loopgruspgr.a φ A X
1loopgruspgr.n φ N V
1loopgruspgr.i φ iEdg G = A N
Assertion 1loopgredg φ Edg G = N

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v φ Vtx G = V
2 1loopgruspgr.a φ A X
3 1loopgruspgr.n φ N V
4 1loopgruspgr.i φ iEdg G = A N
5 edgval Edg G = ran iEdg G
6 5 a1i φ Edg G = ran iEdg G
7 4 rneqd φ ran iEdg G = ran A N
8 rnsnopg A X ran A N = N
9 2 8 syl φ ran A N = N
10 6 7 9 3eqtrd φ Edg G = N