Metamath Proof Explorer


Theorem 1loopgrnb0

Description: In a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has no neighbors. (Contributed by AV, 17-Dec-2020) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v φ Vtx G = V
1loopgruspgr.a φ A X
1loopgruspgr.n φ N V
1loopgruspgr.i φ iEdg G = A N
Assertion 1loopgrnb0 φ G NeighbVtx N =

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v φ Vtx G = V
2 1loopgruspgr.a φ A X
3 1loopgruspgr.n φ N V
4 1loopgruspgr.i φ iEdg G = A N
5 1 2 3 4 1loopgruspgr φ G USHGraph
6 uspgrupgr G USHGraph G UPGraph
7 5 6 syl φ G UPGraph
8 1 eleq2d φ N Vtx G N V
9 3 8 mpbird φ N Vtx G
10 eqid Vtx G = Vtx G
11 eqid Edg G = Edg G
12 10 11 nbupgr G UPGraph N Vtx G G NeighbVtx N = v Vtx G N | N v Edg G
13 7 9 12 syl2anc φ G NeighbVtx N = v Vtx G N | N v Edg G
14 1 difeq1d φ Vtx G N = V N
15 14 eleq2d φ v Vtx G N v V N
16 eldifsn v V N v V v N
17 3 adantr φ v V N V
18 simpr φ v V v V
19 17 18 preqsnd φ v V N v = N N = N v = N
20 simpr N = N v = N v = N
21 19 20 syl6bi φ v V N v = N v = N
22 21 necon3ad φ v V v N ¬ N v = N
23 22 expimpd φ v V v N ¬ N v = N
24 16 23 syl5bi φ v V N ¬ N v = N
25 15 24 sylbid φ v Vtx G N ¬ N v = N
26 25 imp φ v Vtx G N ¬ N v = N
27 1 2 3 4 1loopgredg φ Edg G = N
28 27 eleq2d φ N v Edg G N v N
29 prex N v V
30 29 elsn N v N N v = N
31 28 30 bitrdi φ N v Edg G N v = N
32 31 notbid φ ¬ N v Edg G ¬ N v = N
33 32 adantr φ v Vtx G N ¬ N v Edg G ¬ N v = N
34 26 33 mpbird φ v Vtx G N ¬ N v Edg G
35 34 ralrimiva φ v Vtx G N ¬ N v Edg G
36 rabeq0 v Vtx G N | N v Edg G = v Vtx G N ¬ N v Edg G
37 35 36 sylibr φ v Vtx G N | N v Edg G =
38 13 37 eqtrd φ G NeighbVtx N =