Metamath Proof Explorer


Theorem 1loopgruspgr

Description: A graph with one edge which is a loop is a simple pseudograph (see also uspgr1v1eop ). (Contributed by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v φ Vtx G = V
1loopgruspgr.a φ A X
1loopgruspgr.n φ N V
1loopgruspgr.i φ iEdg G = A N
Assertion 1loopgruspgr φ G USHGraph

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v φ Vtx G = V
2 1loopgruspgr.a φ A X
3 1loopgruspgr.n φ N V
4 1loopgruspgr.i φ iEdg G = A N
5 eqid Vtx G = Vtx G
6 3 1 eleqtrrd φ N Vtx G
7 dfsn2 N = N N
8 7 a1i φ N = N N
9 8 opeq2d φ A N = A N N
10 9 sneqd φ A N = A N N
11 4 10 eqtrd φ iEdg G = A N N
12 5 2 6 6 11 uspgr1e φ G USHGraph