Metamath Proof Explorer


Theorem 1loopgrvd0

Description: The vertex degree of a one-edge graph, case 1 (for a loop): a loop at a vertex other than the given vertex contributes nothing to the vertex degree. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses 1loopgruspgr.v φ Vtx G = V
1loopgruspgr.a φ A X
1loopgruspgr.n φ N V
1loopgruspgr.i φ iEdg G = A N
1loopgrvd0.k φ K V N
Assertion 1loopgrvd0 φ VtxDeg G K = 0

Proof

Step Hyp Ref Expression
1 1loopgruspgr.v φ Vtx G = V
2 1loopgruspgr.a φ A X
3 1loopgruspgr.n φ N V
4 1loopgruspgr.i φ iEdg G = A N
5 1loopgrvd0.k φ K V N
6 5 eldifbd φ ¬ K N
7 snex N V
8 fvsng A X N V A N A = N
9 2 7 8 sylancl φ A N A = N
10 9 eleq2d φ K A N A K N
11 6 10 mtbird φ ¬ K A N A
12 4 dmeqd φ dom iEdg G = dom A N
13 dmsnopg N V dom A N = A
14 7 13 mp1i φ dom A N = A
15 12 14 eqtrd φ dom iEdg G = A
16 4 fveq1d φ iEdg G i = A N i
17 16 eleq2d φ K iEdg G i K A N i
18 15 17 rexeqbidv φ i dom iEdg G K iEdg G i i A K A N i
19 fveq2 i = A A N i = A N A
20 19 eleq2d i = A K A N i K A N A
21 20 rexsng A X i A K A N i K A N A
22 2 21 syl φ i A K A N i K A N A
23 18 22 bitrd φ i dom iEdg G K iEdg G i K A N A
24 11 23 mtbird φ ¬ i dom iEdg G K iEdg G i
25 5 eldifad φ K V
26 1 eleq2d φ K Vtx G K V
27 25 26 mpbird φ K Vtx G
28 eqid Vtx G = Vtx G
29 eqid iEdg G = iEdg G
30 eqid VtxDeg G = VtxDeg G
31 28 29 30 vtxd0nedgb K Vtx G VtxDeg G K = 0 ¬ i dom iEdg G K iEdg G i
32 27 31 syl φ VtxDeg G K = 0 ¬ i dom iEdg G K iEdg G i
33 24 32 mpbird φ VtxDeg G K = 0