Metamath Proof Explorer


Theorem 1lt7

Description: 1 is less than 7. (Contributed by Mario Carneiro, 15-Sep-2013)

Ref Expression
Assertion 1lt7 1 < 7

Proof

Step Hyp Ref Expression
1 1lt2 1 < 2
2 2lt7 2 < 7
3 1re 1
4 2re 2
5 7re 7
6 3 4 5 lttri 1 < 2 2 < 7 1 < 7
7 1 2 6 mp2an 1 < 7