Step |
Hyp |
Ref |
Expression |
1 |
|
marepvmarrep1.v |
|
2 |
|
marepvmarrep1.o |
|
3 |
|
marepvmarrep1.x |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5 1 2
|
ma1repvcl |
|
7 |
6
|
ancom2s |
|
8 |
3 7
|
eqeltrid |
|
9 |
|
elmapi |
|
10 |
|
ffvelrn |
|
11 |
10
|
ex |
|
12 |
9 11
|
syl |
|
13 |
12 1
|
eleq2s |
|
14 |
13
|
impcom |
|
15 |
14
|
adantl |
|
16 |
|
simpl |
|
17 |
16
|
adantl |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
4 5 18 19
|
marrepval |
|
21 |
8 15 17 17 20
|
syl22anc |
|
22 |
|
iftrue |
|
23 |
22
|
adantr |
|
24 |
|
iftrue |
|
25 |
24
|
adantr |
|
26 |
|
iftrue |
|
27 |
|
fveq2 |
|
28 |
27
|
adantr |
|
29 |
26 28
|
sylan9eq |
|
30 |
25 29
|
eqtr4d |
|
31 |
|
eqid |
|
32 |
|
simpr |
|
33 |
32
|
adantr |
|
34 |
33
|
3ad2ant1 |
|
35 |
|
simpl |
|
36 |
35
|
adantr |
|
37 |
36
|
3ad2ant1 |
|
38 |
|
simp2 |
|
39 |
|
simp3 |
|
40 |
4 31 19 34 37 38 39 2
|
mat1ov |
|
41 |
40
|
adantl |
|
42 |
41
|
adantl |
|
43 |
|
eqtr2 |
|
44 |
43
|
eqcomd |
|
45 |
44
|
ex |
|
46 |
45
|
con3d |
|
47 |
46
|
adantr |
|
48 |
47
|
impcom |
|
49 |
|
iffalse |
|
50 |
48 49
|
syl |
|
51 |
42 50
|
eqtrd |
|
52 |
|
iffalse |
|
53 |
52
|
adantr |
|
54 |
|
iffalse |
|
55 |
54
|
adantr |
|
56 |
51 53 55
|
3eqtr4rd |
|
57 |
30 56
|
pm2.61ian |
|
58 |
23 57
|
eqtrd |
|
59 |
|
iffalse |
|
60 |
59
|
adantr |
|
61 |
4 5 2
|
mat1bas |
|
62 |
61
|
adantr |
|
63 |
|
simpr |
|
64 |
63
|
adantl |
|
65 |
62 64 17
|
3jca |
|
66 |
65
|
3ad2ant1 |
|
67 |
|
3simpc |
|
68 |
37 66 67
|
3jca |
|
69 |
68
|
adantl |
|
70 |
4 5 1 2 19 3
|
ma1repveval |
|
71 |
69 70
|
syl |
|
72 |
34
|
ad2antlr |
|
73 |
37
|
ad2antlr |
|
74 |
38
|
ad2antlr |
|
75 |
39
|
ad2antlr |
|
76 |
4 31 19 72 73 74 75 2
|
mat1ov |
|
77 |
|
equcom |
|
78 |
77
|
a1i |
|
79 |
78
|
ifbid |
|
80 |
76 79
|
eqtr2d |
|
81 |
80
|
ifeq2da |
|
82 |
60 71 81
|
3eqtrd |
|
83 |
58 82
|
pm2.61ian |
|
84 |
83
|
mpoeq3dva |
|
85 |
|
eqid |
|
86 |
4 5 85 1
|
marepvval |
|
87 |
65 86
|
syl |
|
88 |
3 87
|
eqtr2id |
|
89 |
21 84 88
|
3eqtrd |
|