Metamath Proof Explorer


Theorem 1marepvsma1

Description: The submatrix of the identity matrix with the ith column replaced by the vector obtained by removing the ith row and the ith column is an identity matrix. (Contributed by AV, 14-Feb-2019) (Revised by AV, 27-Feb-2019)

Ref Expression
Hypotheses 1marepvsma1.v V = Base R N
1marepvsma1.1 1 ˙ = 1 N Mat R
1marepvsma1.x X = 1 ˙ N matRepV R Z I
Assertion 1marepvsma1 R Ring N Fin I N Z V I N subMat R X I = 1 N I Mat R

Proof

Step Hyp Ref Expression
1 1marepvsma1.v V = Base R N
2 1marepvsma1.1 1 ˙ = 1 N Mat R
3 1marepvsma1.x X = 1 ˙ N matRepV R Z I
4 3 oveqi i X j = i 1 ˙ N matRepV R Z I j
5 4 a1i R Ring N Fin I N Z V i N I j N I i X j = i 1 ˙ N matRepV R Z I j
6 eqid N Mat R = N Mat R
7 eqid Base N Mat R = Base N Mat R
8 6 7 2 mat1bas R Ring N Fin 1 ˙ Base N Mat R
9 8 adantr R Ring N Fin I N Z V 1 ˙ Base N Mat R
10 simprr R Ring N Fin I N Z V Z V
11 simprl R Ring N Fin I N Z V I N
12 9 10 11 3jca R Ring N Fin I N Z V 1 ˙ Base N Mat R Z V I N
13 12 3ad2ant1 R Ring N Fin I N Z V i N I j N I 1 ˙ Base N Mat R Z V I N
14 eldifi i N I i N
15 eldifi j N I j N
16 14 15 anim12i i N I j N I i N j N
17 16 3adant1 R Ring N Fin I N Z V i N I j N I i N j N
18 eqid N matRepV R = N matRepV R
19 6 7 18 1 marepveval 1 ˙ Base N Mat R Z V I N i N j N i 1 ˙ N matRepV R Z I j = if j = I Z i i 1 ˙ j
20 13 17 19 syl2anc R Ring N Fin I N Z V i N I j N I i 1 ˙ N matRepV R Z I j = if j = I Z i i 1 ˙ j
21 eldifsni j N I j I
22 21 neneqd j N I ¬ j = I
23 22 3ad2ant3 R Ring N Fin I N Z V i N I j N I ¬ j = I
24 23 iffalsed R Ring N Fin I N Z V i N I j N I if j = I Z i i 1 ˙ j = i 1 ˙ j
25 eqid 1 R = 1 R
26 eqid 0 R = 0 R
27 simp1lr R Ring N Fin I N Z V i N I j N I N Fin
28 simp1ll R Ring N Fin I N Z V i N I j N I R Ring
29 14 3ad2ant2 R Ring N Fin I N Z V i N I j N I i N
30 15 3ad2ant3 R Ring N Fin I N Z V i N I j N I j N
31 6 25 26 27 28 29 30 2 mat1ov R Ring N Fin I N Z V i N I j N I i 1 ˙ j = if i = j 1 R 0 R
32 24 31 eqtrd R Ring N Fin I N Z V i N I j N I if j = I Z i i 1 ˙ j = if i = j 1 R 0 R
33 5 20 32 3eqtrd R Ring N Fin I N Z V i N I j N I i X j = if i = j 1 R 0 R
34 33 mpoeq3dva R Ring N Fin I N Z V i N I , j N I i X j = i N I , j N I if i = j 1 R 0 R
35 6 7 1 2 ma1repvcl R Ring N Fin Z V I N 1 ˙ N matRepV R Z I Base N Mat R
36 35 ancom2s R Ring N Fin I N Z V 1 ˙ N matRepV R Z I Base N Mat R
37 3 36 eqeltrid R Ring N Fin I N Z V X Base N Mat R
38 eqid N subMat R = N subMat R
39 6 38 7 submaval X Base N Mat R I N I N I N subMat R X I = i N I , j N I i X j
40 37 11 11 39 syl3anc R Ring N Fin I N Z V I N subMat R X I = i N I , j N I i X j
41 diffi N Fin N I Fin
42 41 anim2i R Ring N Fin R Ring N I Fin
43 42 ancomd R Ring N Fin N I Fin R Ring
44 43 adantr R Ring N Fin I N Z V N I Fin R Ring
45 eqid N I Mat R = N I Mat R
46 45 25 26 mat1 N I Fin R Ring 1 N I Mat R = i N I , j N I if i = j 1 R 0 R
47 44 46 syl R Ring N Fin I N Z V 1 N I Mat R = i N I , j N I if i = j 1 R 0 R
48 34 40 47 3eqtr4d R Ring N Fin I N Z V I N subMat R X I = 1 N I Mat R