Metamath Proof Explorer


Theorem 1mhdrd

Description: Example theorem demonstrating decimal expansions. (Contributed by Thierry Arnoux, 27-Dec-2021)

Ref Expression
Assertion 1mhdrd 0.99 + 0.01 = 1

Proof

Step Hyp Ref Expression
1 0nn0 0 0
2 9nn0 9 0
3 1nn0 1 0
4 2 dec0h 9 = 09
5 4 eqcomi 09 = 9
6 5 deceq1i 099 = 99
7 1 dec0h 0 = 00
8 7 eqcomi 00 = 0
9 8 deceq1i 001 = 01
10 9cn 9
11 10 addid1i 9 + 0 = 9
12 11 oveq1i 9 + 0 + 1 = 9 + 1
13 9p1e10 9 + 1 = 10
14 12 13 eqtri 9 + 0 + 1 = 10
15 2 2 1 3 6 9 14 1 13 decaddc 099 + 001 = 100
16 1 2 2 1 1 3 3 1 1 15 dpadd3 0.99 + 0.01 = 1.00
17 1 dp20u 00 = 0
18 17 oveq2i 1.00 = 1.0
19 3 dp0u 1.0 = 1
20 16 18 19 3eqtri 0.99 + 0.01 = 1