Metamath Proof Explorer


Theorem 1mhlfehlf

Description: Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017)

Ref Expression
Assertion 1mhlfehlf 1 1 2 = 1 2

Proof

Step Hyp Ref Expression
1 2cn 2
2 ax-1cn 1
3 2cnne0 2 2 0
4 divsubdir 2 1 2 2 0 2 1 2 = 2 2 1 2
5 1 2 3 4 mp3an 2 1 2 = 2 2 1 2
6 2m1e1 2 1 = 1
7 6 oveq1i 2 1 2 = 1 2
8 2div2e1 2 2 = 1
9 8 oveq1i 2 2 1 2 = 1 1 2
10 5 7 9 3eqtr3ri 1 1 2 = 1 2