Metamath Proof Explorer


Theorem 1mhlfehlf

Description: Prove that 1 - 1/2 = 1/2. (Contributed by David A. Wheeler, 4-Jan-2017) (Proof shortened by SN, 22-Oct-2025)

Ref Expression
Assertion 1mhlfehlf 1 1 2 = 1 2

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 halfcn 1 2
3 2halves 1 1 2 + 1 2 = 1
4 1 3 ax-mp 1 2 + 1 2 = 1
5 1 2 2 4 subaddrii 1 1 2 = 1 2