Metamath Proof Explorer


Theorem 1mod

Description: Special case: 1 modulo a real number greater than 1 is 1. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Assertion 1mod N 1 < N 1 mod N = 1

Proof

Step Hyp Ref Expression
1 0lt1 0 < 1
2 0re 0
3 1re 1
4 lttr 0 1 N 0 < 1 1 < N 0 < N
5 2 3 4 mp3an12 N 0 < 1 1 < N 0 < N
6 1 5 mpani N 1 < N 0 < N
7 6 imdistani N 1 < N N 0 < N
8 elrp N + N 0 < N
9 7 8 sylibr N 1 < N N +
10 9 3 jctil N 1 < N 1 N +
11 simpr N 1 < N 1 < N
12 0le1 0 1
13 11 12 jctil N 1 < N 0 1 1 < N
14 modid 1 N + 0 1 1 < N 1 mod N = 1
15 10 13 14 syl2anc N 1 < N 1 mod N = 1