Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
1n0
Next ⟩
xp01disj
Metamath Proof Explorer
Ascii
Unicode
Theorem
1n0
Description:
Ordinal one is not equal to ordinal zero.
(Contributed by
NM
, 26-Dec-2004)
Ref
Expression
Assertion
1n0
⊢
1
𝑜
≠
∅
Proof
Step
Hyp
Ref
Expression
1
df1o2
⊢
1
𝑜
=
∅
2
0ex
⊢
∅
∈
V
3
2
snnz
⊢
∅
≠
∅
4
1
3
eqnetri
⊢
1
𝑜
≠
∅