Metamath Proof Explorer


Theorem 1nn

Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion 1nn 1

Proof

Step Hyp Ref Expression
1 1ex 1 V
2 fr0g 1 V rec x V x + 1 1 ω = 1
3 1 2 ax-mp rec x V x + 1 1 ω = 1
4 frfnom rec x V x + 1 1 ω Fn ω
5 peano1 ω
6 fnfvelrn rec x V x + 1 1 ω Fn ω ω rec x V x + 1 1 ω ran rec x V x + 1 1 ω
7 4 5 6 mp2an rec x V x + 1 1 ω ran rec x V x + 1 1 ω
8 3 7 eqeltrri 1 ran rec x V x + 1 1 ω
9 df-nn = rec x V x + 1 1 ω
10 df-ima rec x V x + 1 1 ω = ran rec x V x + 1 1 ω
11 9 10 eqtri = ran rec x V x + 1 1 ω
12 8 11 eleqtrri 1