Metamath Proof Explorer


Theorem 1nprm

Description: 1 is not a prime number. (Contributed by Paul Chapman, 22-Jun-2011) (Proof shortened by Fan Zheng, 3-Jul-2016)

Ref Expression
Assertion 1nprm ¬ 1

Proof

Step Hyp Ref Expression
1 1nn 1
2 eleq1 z = 1 z 1
3 1 2 mpbiri z = 1 z
4 nnnn0 z z 0
5 dvds1 z 0 z 1 z = 1
6 4 5 syl z z 1 z = 1
7 6 bicomd z z = 1 z 1
8 3 7 biadanii z = 1 z z 1
9 velsn z 1 z = 1
10 breq1 n = z n 1 z 1
11 10 elrab z n | n 1 z z 1
12 8 9 11 3bitr4ri z n | n 1 z 1
13 12 eqriv n | n 1 = 1
14 1ex 1 V
15 14 ensn1 1 1 𝑜
16 13 15 eqbrtri n | n 1 1 𝑜
17 1sdom2 1 𝑜 2 𝑜
18 ensdomtr n | n 1 1 𝑜 1 𝑜 2 𝑜 n | n 1 2 𝑜
19 16 17 18 mp2an n | n 1 2 𝑜
20 sdomnen n | n 1 2 𝑜 ¬ n | n 1 2 𝑜
21 19 20 ax-mp ¬ n | n 1 2 𝑜
22 isprm 1 1 n | n 1 2 𝑜
23 1 22 mpbiran 1 n | n 1 2 𝑜
24 21 23 mtbir ¬ 1