Metamath Proof Explorer


Theorem 1nqenq

Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996) (Revised by Mario Carneiro, 28-Apr-2013) (New usage is discouraged.)

Ref Expression
Assertion 1nqenq A 𝑵 1 𝑸 ~ 𝑸 A A

Proof

Step Hyp Ref Expression
1 enqer ~ 𝑸 Er 𝑵 × 𝑵
2 1 a1i A 𝑵 ~ 𝑸 Er 𝑵 × 𝑵
3 mulidpi A 𝑵 A 𝑵 1 𝑜 = A
4 3 3 opeq12d A 𝑵 A 𝑵 1 𝑜 A 𝑵 1 𝑜 = A A
5 1pi 1 𝑜 𝑵
6 mulcanenq A 𝑵 1 𝑜 𝑵 1 𝑜 𝑵 A 𝑵 1 𝑜 A 𝑵 1 𝑜 ~ 𝑸 1 𝑜 1 𝑜
7 5 5 6 mp3an23 A 𝑵 A 𝑵 1 𝑜 A 𝑵 1 𝑜 ~ 𝑸 1 𝑜 1 𝑜
8 df-1nq 1 𝑸 = 1 𝑜 1 𝑜
9 7 8 breqtrrdi A 𝑵 A 𝑵 1 𝑜 A 𝑵 1 𝑜 ~ 𝑸 1 𝑸
10 4 9 eqbrtrrd A 𝑵 A A ~ 𝑸 1 𝑸
11 2 10 ersym A 𝑵 1 𝑸 ~ 𝑸 A A