Metamath Proof Explorer


Theorem 1nuz2

Description: 1 is not in ( ZZ>=2 ) . (Contributed by Paul Chapman, 21-Nov-2012)

Ref Expression
Assertion 1nuz2 ¬ 1 2

Proof

Step Hyp Ref Expression
1 neirr ¬ 1 1
2 eluz2b3 1 2 1 1 1
3 2 simprbi 1 2 1 1
4 1 3 mto ¬ 1 2