Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
1nuz2
Next ⟩
elnn1uz2
Metamath Proof Explorer
Ascii
Unicode
Theorem
1nuz2
Description:
1 is not in
( ZZ>=
2 )
.
(Contributed by
Paul Chapman
, 21-Nov-2012)
Ref
Expression
Assertion
1nuz2
⊢
¬
1
∈
ℤ
≥
2
Proof
Step
Hyp
Ref
Expression
1
neirr
⊢
¬
1
≠
1
2
eluz2b3
⊢
1
∈
ℤ
≥
2
↔
1
∈
ℕ
∧
1
≠
1
3
2
simprbi
⊢
1
∈
ℤ
≥
2
→
1
≠
1
4
1
3
mto
⊢
¬
1
∈
ℤ
≥
2