Metamath Proof Explorer


Theorem 1one2o

Description: Ordinal one is not ordinal two. Analogous to 1ne2 . (Contributed by AV, 17-Oct-2023)

Ref Expression
Assertion 1one2o 1 𝑜 2 𝑜

Proof

Step Hyp Ref Expression
1 1onn 1 𝑜 ω
2 omsucne 1 𝑜 ω 1 𝑜 suc 1 𝑜
3 1 2 ax-mp 1 𝑜 suc 1 𝑜
4 df-2o 2 𝑜 = suc 1 𝑜
5 3 4 neeqtrri 1 𝑜 2 𝑜