Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Natural number arithmetic
1onn
Next ⟩
2onn
Metamath Proof Explorer
Ascii
Unicode
Theorem
1onn
Description:
One is a natural number.
(Contributed by
NM
, 29-Oct-1995)
Ref
Expression
Assertion
1onn
⊢
1
𝑜
∈
ω
Proof
Step
Hyp
Ref
Expression
1
df-1o
⊢
1
𝑜
=
suc
⁡
∅
2
peano1
⊢
∅
∈
ω
3
peano2
⊢
∅
∈
ω
→
suc
⁡
∅
∈
ω
4
2
3
ax-mp
⊢
suc
⁡
∅
∈
ω
5
1
4
eqeltri
⊢
1
𝑜
∈
ω