Metamath Proof Explorer


Theorem 1onn

Description: One is a natural number. (Contributed by NM, 29-Oct-1995)

Ref Expression
Assertion 1onn 1 𝑜 ω

Proof

Step Hyp Ref Expression
1 df-1o 1 𝑜 = suc
2 peano1 ω
3 peano2 ω suc ω
4 2 3 ax-mp suc ω
5 1 4 eqeltri 1 𝑜 ω