Metamath Proof Explorer


Theorem 1pmatscmul

Description: The scalar product of the identity polynomial matrix with a polynomial is a polynomial matrix. (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses 1pmatscmul.p P = Poly 1 R
1pmatscmul.c C = N Mat P
1pmatscmul.b B = Base C
1pmatscmul.e E = Base P
1pmatscmul.m ˙ = C
1pmatscmul.1 1 ˙ = 1 C
Assertion 1pmatscmul N Fin R Ring Q E Q ˙ 1 ˙ B

Proof

Step Hyp Ref Expression
1 1pmatscmul.p P = Poly 1 R
2 1pmatscmul.c C = N Mat P
3 1pmatscmul.b B = Base C
4 1pmatscmul.e E = Base P
5 1pmatscmul.m ˙ = C
6 1pmatscmul.1 1 ˙ = 1 C
7 1 ply1ring R Ring P Ring
8 7 anim2i N Fin R Ring N Fin P Ring
9 8 3adant3 N Fin R Ring Q E N Fin P Ring
10 simp3 N Fin R Ring Q E Q E
11 1 2 pmatring N Fin R Ring C Ring
12 11 3adant3 N Fin R Ring Q E C Ring
13 3 6 ringidcl C Ring 1 ˙ B
14 12 13 syl N Fin R Ring Q E 1 ˙ B
15 4 2 3 5 matvscl N Fin P Ring Q E 1 ˙ B Q ˙ 1 ˙ B
16 9 10 14 15 syl12anc N Fin R Ring Q E Q ˙ 1 ˙ B