Metamath Proof Explorer


Theorem 1pthdlem1

Description: Lemma 1 for 1pthd . (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p P = ⟨“ XY ”⟩
1wlkd.f F = ⟨“ J ”⟩
Assertion 1pthdlem1 Fun P 1 ..^ F -1

Proof

Step Hyp Ref Expression
1 1wlkd.p P = ⟨“ XY ”⟩
2 1wlkd.f F = ⟨“ J ”⟩
3 fun0 Fun
4 2 fveq2i F = ⟨“ J ”⟩
5 s1len ⟨“ J ”⟩ = 1
6 4 5 eqtri F = 1
7 6 oveq2i 1 ..^ F = 1 ..^ 1
8 fzo0 1 ..^ 1 =
9 7 8 eqtri 1 ..^ F =
10 9 reseq2i P 1 ..^ F = P
11 res0 P =
12 10 11 eqtri P 1 ..^ F =
13 12 cnveqi P 1 ..^ F -1 = -1
14 cnv0 -1 =
15 13 14 eqtri P 1 ..^ F -1 =
16 15 funeqi Fun P 1 ..^ F -1 Fun
17 3 16 mpbir Fun P 1 ..^ F -1