Step |
Hyp |
Ref |
Expression |
1 |
|
1pthon2v.v |
|
2 |
|
1pthon2v.e |
|
3 |
|
simpl |
|
4 |
3
|
anim2i |
|
5 |
4
|
3adant3 |
|
6 |
5
|
adantl |
|
7 |
1
|
0pthonv |
|
8 |
6 7
|
simpl2im |
|
9 |
|
oveq2 |
|
10 |
9
|
eqcoms |
|
11 |
10
|
breqd |
|
12 |
11
|
2exbidv |
|
13 |
12
|
adantr |
|
14 |
8 13
|
mpbird |
|
15 |
14
|
ex |
|
16 |
2
|
eleq2i |
|
17 |
|
eqid |
|
18 |
17
|
uhgredgiedgb |
|
19 |
16 18
|
syl5bb |
|
20 |
19
|
3ad2ant1 |
|
21 |
|
s1cli |
|
22 |
|
s2cli |
|
23 |
21 22
|
pm3.2i |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
simpl2l |
|
27 |
|
simpl2r |
|
28 |
|
eqneqall |
|
29 |
28
|
com12 |
|
30 |
29
|
3ad2ant3 |
|
31 |
30
|
adantr |
|
32 |
31
|
imp |
|
33 |
|
sseq2 |
|
34 |
33
|
adantl |
|
35 |
34
|
biimpa |
|
36 |
35
|
adantl |
|
37 |
36
|
adantr |
|
38 |
24 25 26 27 32 37 1 17
|
1pthond |
|
39 |
|
breq12 |
|
40 |
39
|
spc2egv |
|
41 |
23 38 40
|
mpsyl |
|
42 |
41
|
exp44 |
|
43 |
42
|
rexlimdv |
|
44 |
20 43
|
sylbid |
|
45 |
44
|
rexlimdv |
|
46 |
45
|
3exp |
|
47 |
46
|
com34 |
|
48 |
47
|
3imp |
|
49 |
48
|
com12 |
|
50 |
15 49
|
pm2.61ine |
|