Metamath Proof Explorer


Theorem 1pthon2v

Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1pthon2v.v V = Vtx G
1pthon2v.e E = Edg G
Assertion 1pthon2v G UHGraph A V B V e E A B e f p f A PathsOn G B p

Proof

Step Hyp Ref Expression
1 1pthon2v.v V = Vtx G
2 1pthon2v.e E = Edg G
3 simpl A V B V A V
4 3 anim2i G UHGraph A V B V G UHGraph A V
5 4 3adant3 G UHGraph A V B V e E A B e G UHGraph A V
6 5 adantl A = B G UHGraph A V B V e E A B e G UHGraph A V
7 1 0pthonv A V f p f A PathsOn G A p
8 6 7 simpl2im A = B G UHGraph A V B V e E A B e f p f A PathsOn G A p
9 oveq2 B = A A PathsOn G B = A PathsOn G A
10 9 eqcoms A = B A PathsOn G B = A PathsOn G A
11 10 breqd A = B f A PathsOn G B p f A PathsOn G A p
12 11 2exbidv A = B f p f A PathsOn G B p f p f A PathsOn G A p
13 12 adantr A = B G UHGraph A V B V e E A B e f p f A PathsOn G B p f p f A PathsOn G A p
14 8 13 mpbird A = B G UHGraph A V B V e E A B e f p f A PathsOn G B p
15 14 ex A = B G UHGraph A V B V e E A B e f p f A PathsOn G B p
16 2 eleq2i e E e Edg G
17 eqid iEdg G = iEdg G
18 17 uhgredgiedgb G UHGraph e Edg G i dom iEdg G e = iEdg G i
19 16 18 syl5bb G UHGraph e E i dom iEdg G e = iEdg G i
20 19 3ad2ant1 G UHGraph A V B V A B e E i dom iEdg G e = iEdg G i
21 s1cli ⟨“ i ”⟩ Word V
22 s2cli ⟨“ AB ”⟩ Word V
23 21 22 pm3.2i ⟨“ i ”⟩ Word V ⟨“ AB ”⟩ Word V
24 eqid ⟨“ AB ”⟩ = ⟨“ AB ”⟩
25 eqid ⟨“ i ”⟩ = ⟨“ i ”⟩
26 simpl2l G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e A V
27 simpl2r G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e B V
28 eqneqall A = B A B iEdg G i = A
29 28 com12 A B A = B iEdg G i = A
30 29 3ad2ant3 G UHGraph A V B V A B A = B iEdg G i = A
31 30 adantr G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e A = B iEdg G i = A
32 31 imp G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e A = B iEdg G i = A
33 sseq2 e = iEdg G i A B e A B iEdg G i
34 33 adantl i dom iEdg G e = iEdg G i A B e A B iEdg G i
35 34 biimpa i dom iEdg G e = iEdg G i A B e A B iEdg G i
36 35 adantl G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e A B iEdg G i
37 36 adantr G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e A B A B iEdg G i
38 24 25 26 27 32 37 1 17 1pthond G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e ⟨“ i ”⟩ A PathsOn G B ⟨“ AB ”⟩
39 breq12 f = ⟨“ i ”⟩ p = ⟨“ AB ”⟩ f A PathsOn G B p ⟨“ i ”⟩ A PathsOn G B ⟨“ AB ”⟩
40 39 spc2egv ⟨“ i ”⟩ Word V ⟨“ AB ”⟩ Word V ⟨“ i ”⟩ A PathsOn G B ⟨“ AB ”⟩ f p f A PathsOn G B p
41 23 38 40 mpsyl G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e f p f A PathsOn G B p
42 41 exp44 G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e f p f A PathsOn G B p
43 42 rexlimdv G UHGraph A V B V A B i dom iEdg G e = iEdg G i A B e f p f A PathsOn G B p
44 20 43 sylbid G UHGraph A V B V A B e E A B e f p f A PathsOn G B p
45 44 rexlimdv G UHGraph A V B V A B e E A B e f p f A PathsOn G B p
46 45 3exp G UHGraph A V B V A B e E A B e f p f A PathsOn G B p
47 46 com34 G UHGraph A V B V e E A B e A B f p f A PathsOn G B p
48 47 3imp G UHGraph A V B V e E A B e A B f p f A PathsOn G B p
49 48 com12 A B G UHGraph A V B V e E A B e f p f A PathsOn G B p
50 15 49 pm2.61ine G UHGraph A V B V e E A B e f p f A PathsOn G B p