Metamath Proof Explorer


Theorem 1pthon2ve

Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Proof shortened by AV, 15-Feb-2021)

Ref Expression
Hypotheses 1pthon2v.v V=VtxG
1pthon2v.e E=EdgG
Assertion 1pthon2ve GUHGraphAVBVABEfpfAPathsOnGBp

Proof

Step Hyp Ref Expression
1 1pthon2v.v V=VtxG
2 1pthon2v.e E=EdgG
3 id ABEABE
4 sseq2 e=ABABeABAB
5 4 adantl ABEe=ABABeABAB
6 ssidd ABEABAB
7 3 5 6 rspcedvd ABEeEABe
8 1 2 1pthon2v GUHGraphAVBVeEABefpfAPathsOnGBp
9 7 8 syl3an3 GUHGraphAVBVABEfpfAPathsOnGBp