Metamath Proof Explorer


Theorem 1pthon2ve

Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Proof shortened by AV, 15-Feb-2021)

Ref Expression
Hypotheses 1pthon2v.v V = Vtx G
1pthon2v.e E = Edg G
Assertion 1pthon2ve G UHGraph A V B V A B E f p f A PathsOn G B p

Proof

Step Hyp Ref Expression
1 1pthon2v.v V = Vtx G
2 1pthon2v.e E = Edg G
3 id A B E A B E
4 sseq2 e = A B A B e A B A B
5 4 adantl A B E e = A B A B e A B A B
6 ssidd A B E A B A B
7 3 5 6 rspcedvd A B E e E A B e
8 1 2 1pthon2v G UHGraph A V B V e E A B e f p f A PathsOn G B p
9 7 8 syl3an3 G UHGraph A V B V A B E f p f A PathsOn G B p