Metamath Proof Explorer


Theorem 1pthond

Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021)

Ref Expression
Hypotheses 1wlkd.p P = ⟨“ XY ”⟩
1wlkd.f F = ⟨“ J ”⟩
1wlkd.x φ X V
1wlkd.y φ Y V
1wlkd.l φ X = Y I J = X
1wlkd.j φ X Y X Y I J
1wlkd.v V = Vtx G
1wlkd.i I = iEdg G
Assertion 1pthond φ F X PathsOn G Y P

Proof

Step Hyp Ref Expression
1 1wlkd.p P = ⟨“ XY ”⟩
2 1wlkd.f F = ⟨“ J ”⟩
3 1wlkd.x φ X V
4 1wlkd.y φ Y V
5 1wlkd.l φ X = Y I J = X
6 1wlkd.j φ X Y X Y I J
7 1wlkd.v V = Vtx G
8 1wlkd.i I = iEdg G
9 1 2 3 4 5 6 7 8 1wlkd φ F Walks G P
10 1 fveq1i P 0 = ⟨“ XY ”⟩ 0
11 s2fv0 X V ⟨“ XY ”⟩ 0 = X
12 10 11 eqtrid X V P 0 = X
13 3 12 syl φ P 0 = X
14 2 fveq2i F = ⟨“ J ”⟩
15 s1len ⟨“ J ”⟩ = 1
16 14 15 eqtri F = 1
17 1 16 fveq12i P F = ⟨“ XY ”⟩ 1
18 s2fv1 Y V ⟨“ XY ”⟩ 1 = Y
19 4 18 syl φ ⟨“ XY ”⟩ 1 = Y
20 17 19 eqtrid φ P F = Y
21 wlkv F Walks G P G V F V P V
22 3simpc G V F V P V F V P V
23 9 21 22 3syl φ F V P V
24 3 4 23 jca31 φ X V Y V F V P V
25 7 iswlkon X V Y V F V P V F X WalksOn G Y P F Walks G P P 0 = X P F = Y
26 24 25 syl φ F X WalksOn G Y P F Walks G P P 0 = X P F = Y
27 9 13 20 26 mpbir3and φ F X WalksOn G Y P
28 1 2 3 4 5 6 7 8 1trld φ F Trails G P
29 7 istrlson X V Y V F V P V F X TrailsOn G Y P F X WalksOn G Y P F Trails G P
30 24 29 syl φ F X TrailsOn G Y P F X WalksOn G Y P F Trails G P
31 27 28 30 mpbir2and φ F X TrailsOn G Y P
32 1 2 3 4 5 6 7 8 1pthd φ F Paths G P
33 3 adantl F V P V φ X V
34 4 adantl F V P V φ Y V
35 simpl F V P V φ F V P V
36 33 34 35 jca31 F V P V φ X V Y V F V P V
37 36 ex F V P V φ X V Y V F V P V
38 21 22 37 3syl F Walks G P φ X V Y V F V P V
39 9 38 mpcom φ X V Y V F V P V
40 7 ispthson X V Y V F V P V F X PathsOn G Y P F X TrailsOn G Y P F Paths G P
41 39 40 syl φ F X PathsOn G Y P F X TrailsOn G Y P F Paths G P
42 31 32 41 mpbir2and φ F X PathsOn G Y P