Metamath Proof Explorer


Theorem 1re

Description: The number 1 is real. This used to be one of our postulates for complex numbers, but Eric Schmidt discovered that it could be derived from a weaker postulate, ax-1cn , by exploiting properties of the imaginary unit _i . (Contributed by Eric Schmidt, 11-Apr-2007) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Assertion 1re 1

Proof

Step Hyp Ref Expression
1 ax-1ne0 1 0
2 ax-1cn 1
3 cnre 1 a b 1 = a + i b
4 2 3 ax-mp a b 1 = a + i b
5 neeq1 1 = a + i b 1 0 a + i b 0
6 5 biimpcd 1 0 1 = a + i b a + i b 0
7 0cn 0
8 cnre 0 c d 0 = c + i d
9 7 8 ax-mp c d 0 = c + i d
10 neeq2 0 = c + i d a + i b 0 a + i b c + i d
11 10 biimpcd a + i b 0 0 = c + i d a + i b c + i d
12 11 reximdv a + i b 0 d 0 = c + i d d a + i b c + i d
13 12 reximdv a + i b 0 c d 0 = c + i d c d a + i b c + i d
14 6 9 13 syl6mpi 1 0 1 = a + i b c d a + i b c + i d
15 14 reximdv 1 0 b 1 = a + i b b c d a + i b c + i d
16 15 reximdv 1 0 a b 1 = a + i b a b c d a + i b c + i d
17 4 16 mpi 1 0 a b c d a + i b c + i d
18 id a = c a = c
19 oveq2 b = d i b = i d
20 18 19 oveqan12d a = c b = d a + i b = c + i d
21 20 expcom b = d a = c a + i b = c + i d
22 21 necon3d b = d a + i b c + i d a c
23 22 com12 a + i b c + i d b = d a c
24 23 necon3bd a + i b c + i d ¬ a c b d
25 24 orrd a + i b c + i d a c b d
26 neeq1 x = a x y a y
27 neeq2 y = c a y a c
28 26 27 rspc2ev a c a c x y x y
29 28 3expia a c a c x y x y
30 29 ad2ant2r a b c d a c x y x y
31 neeq1 x = b x y b y
32 neeq2 y = d b y b d
33 31 32 rspc2ev b d b d x y x y
34 33 3expia b d b d x y x y
35 34 ad2ant2l a b c d b d x y x y
36 30 35 jaod a b c d a c b d x y x y
37 25 36 syl5 a b c d a + i b c + i d x y x y
38 37 rexlimdvva a b c d a + i b c + i d x y x y
39 38 rexlimivv a b c d a + i b c + i d x y x y
40 1 17 39 mp2b x y x y
41 eqtr3 x = 0 y = 0 x = y
42 41 ex x = 0 y = 0 x = y
43 42 necon3d x = 0 x y y 0
44 neeq1 z = y z 0 y 0
45 44 rspcev y y 0 z z 0
46 45 expcom y 0 y z z 0
47 43 46 syl6 x = 0 x y y z z 0
48 47 com23 x = 0 y x y z z 0
49 48 adantld x = 0 x y x y z z 0
50 neeq1 z = x z 0 x 0
51 50 rspcev x x 0 z z 0
52 51 expcom x 0 x z z 0
53 52 adantrd x 0 x y z z 0
54 53 a1dd x 0 x y x y z z 0
55 49 54 pm2.61ine x y x y z z 0
56 55 rexlimivv x y x y z z 0
57 ax-rrecex z z 0 x z x = 1
58 remulcl z x z x
59 58 adantlr z z 0 x z x
60 eleq1 z x = 1 z x 1
61 59 60 syl5ibcom z z 0 x z x = 1 1
62 61 rexlimdva z z 0 x z x = 1 1
63 57 62 mpd z z 0 1
64 63 rexlimiva z z 0 1
65 40 56 64 mp2b 1