| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1ne0 |
|
| 2 |
|
ax-1cn |
|
| 3 |
|
cnre |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
|
neeq1 |
|
| 6 |
5
|
biimpcd |
|
| 7 |
|
0cn |
|
| 8 |
|
cnre |
|
| 9 |
7 8
|
ax-mp |
|
| 10 |
|
neeq2 |
|
| 11 |
10
|
biimpcd |
|
| 12 |
11
|
reximdv |
|
| 13 |
12
|
reximdv |
|
| 14 |
6 9 13
|
syl6mpi |
|
| 15 |
14
|
reximdv |
|
| 16 |
15
|
reximdv |
|
| 17 |
4 16
|
mpi |
|
| 18 |
|
id |
|
| 19 |
|
oveq2 |
|
| 20 |
18 19
|
oveqan12d |
|
| 21 |
20
|
expcom |
|
| 22 |
21
|
necon3d |
|
| 23 |
22
|
com12 |
|
| 24 |
23
|
necon3bd |
|
| 25 |
24
|
orrd |
|
| 26 |
|
neeq1 |
|
| 27 |
|
neeq2 |
|
| 28 |
26 27
|
rspc2ev |
|
| 29 |
28
|
3expia |
|
| 30 |
29
|
ad2ant2r |
|
| 31 |
|
neeq1 |
|
| 32 |
|
neeq2 |
|
| 33 |
31 32
|
rspc2ev |
|
| 34 |
33
|
3expia |
|
| 35 |
34
|
ad2ant2l |
|
| 36 |
30 35
|
jaod |
|
| 37 |
25 36
|
syl5 |
|
| 38 |
37
|
rexlimdvva |
|
| 39 |
38
|
rexlimivv |
|
| 40 |
1 17 39
|
mp2b |
|
| 41 |
|
eqtr3 |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
necon3d |
|
| 44 |
|
neeq1 |
|
| 45 |
44
|
rspcev |
|
| 46 |
45
|
expcom |
|
| 47 |
43 46
|
syl6 |
|
| 48 |
47
|
com23 |
|
| 49 |
48
|
adantld |
|
| 50 |
|
neeq1 |
|
| 51 |
50
|
rspcev |
|
| 52 |
51
|
expcom |
|
| 53 |
52
|
adantrd |
|
| 54 |
53
|
a1dd |
|
| 55 |
49 54
|
pm2.61ine |
|
| 56 |
55
|
rexlimivv |
|
| 57 |
|
ax-rrecex |
|
| 58 |
|
remulcl |
|
| 59 |
58
|
adantlr |
|
| 60 |
|
eleq1 |
|
| 61 |
59 60
|
syl5ibcom |
|
| 62 |
61
|
rexlimdva |
|
| 63 |
57 62
|
mpd |
|
| 64 |
63
|
rexlimiva |
|
| 65 |
40 56 64
|
mp2b |
|