Metamath Proof Explorer


Theorem 1rinv

Description: The inverse of the identity is the identity. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses 1rinv.1 I = inv r R
1rinv.2 1 ˙ = 1 R
Assertion 1rinv R Ring I 1 ˙ = 1 ˙

Proof

Step Hyp Ref Expression
1 1rinv.1 I = inv r R
2 1rinv.2 1 ˙ = 1 R
3 eqid Unit R = Unit R
4 3 2 1unit R Ring 1 ˙ Unit R
5 eqid Base R = Base R
6 3 1 5 ringinvcl R Ring 1 ˙ Unit R I 1 ˙ Base R
7 4 6 mpdan R Ring I 1 ˙ Base R
8 eqid R = R
9 5 8 2 ringlidm R Ring I 1 ˙ Base R 1 ˙ R I 1 ˙ = I 1 ˙
10 7 9 mpdan R Ring 1 ˙ R I 1 ˙ = I 1 ˙
11 3 1 8 2 unitrinv R Ring 1 ˙ Unit R 1 ˙ R I 1 ˙ = 1 ˙
12 4 11 mpdan R Ring 1 ˙ R I 1 ˙ = 1 ˙
13 10 12 eqtr3d R Ring I 1 ˙ = 1 ˙