Metamath Proof Explorer


Theorem 1rrg

Description: The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025)

Ref Expression
Hypotheses 1rrg.1 1 ˙ = 1 R
1rrg.e E = RLReg R
1rrg.r φ R Ring
Assertion 1rrg φ 1 ˙ E

Proof

Step Hyp Ref Expression
1 1rrg.1 1 ˙ = 1 R
2 1rrg.e E = RLReg R
3 1rrg.r φ R Ring
4 eqid Unit R = Unit R
5 2 4 unitrrg R Ring Unit R E
6 4 1 1unit R Ring 1 ˙ Unit R
7 5 6 sseldd R Ring 1 ˙ E
8 3 7 syl φ 1 ˙ E