Metamath Proof Explorer


Theorem 1sdom

Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom .) (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion 1sdom A V 1 𝑜 A x A y A ¬ x = y

Proof

Step Hyp Ref Expression
1 1sdom2dom 1 𝑜 A 2 𝑜 A
2 2dom 2 𝑜 A x A y A ¬ x = y
3 df-ne x y ¬ x = y
4 3 2rexbii x A y A x y x A y A ¬ x = y
5 rex2dom A V x A y A x y 2 𝑜 A
6 4 5 sylan2br A V x A y A ¬ x = y 2 𝑜 A
7 6 ex A V x A y A ¬ x = y 2 𝑜 A
8 2 7 impbid2 A V 2 𝑜 A x A y A ¬ x = y
9 1 8 bitrid A V 1 𝑜 A x A y A ¬ x = y