Metamath Proof Explorer


Theorem 1sdom2dom

Description: Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024)

Ref Expression
Assertion 1sdom2dom 1 𝑜 A 2 𝑜 A

Proof

Step Hyp Ref Expression
1 relsdom Rel
2 1 brrelex2i 1 𝑜 A A V
3 sdomdom 1 𝑜 A 1 𝑜 A
4 0sdom1dom A 1 𝑜 A
5 3 4 sylibr 1 𝑜 A A
6 0sdomg A V A A
7 2 6 syl 1 𝑜 A A A
8 5 7 mpbid 1 𝑜 A A
9 n0snor2el A x A y A x y x A = x
10 8 9 syl 1 𝑜 A x A y A x y x A = x
11 sdomnen 1 𝑜 A ¬ 1 𝑜 A
12 df1o2 1 𝑜 =
13 0ex V
14 vex x V
15 en2sn V x V x
16 13 14 15 mp2an x
17 12 16 eqbrtri 1 𝑜 x
18 breq2 A = x 1 𝑜 A 1 𝑜 x
19 17 18 mpbiri A = x 1 𝑜 A
20 19 exlimiv x A = x 1 𝑜 A
21 11 20 nsyl 1 𝑜 A ¬ x A = x
22 10 21 olcnd 1 𝑜 A x A y A x y
23 rex2dom A V x A y A x y 2 𝑜 A
24 2 22 23 syl2anc 1 𝑜 A 2 𝑜 A
25 snsspr1 1 𝑜
26 df2o3 2 𝑜 = 1 𝑜
27 25 12 26 3sstr4i 1 𝑜 2 𝑜
28 domssl 1 𝑜 2 𝑜 2 𝑜 A 1 𝑜 A
29 27 28 mpan 2 𝑜 A 1 𝑜 A
30 snnen2o ¬ y 2 𝑜
31 13 a1i V
32 1oex 1 𝑜 V
33 32 a1i 1 𝑜 V
34 1n0 1 𝑜
35 34 nesymi ¬ = 1 𝑜
36 35 a1i ¬ = 1 𝑜
37 31 33 36 enpr2d 1 𝑜 2 𝑜
38 37 mptru 1 𝑜 2 𝑜
39 26 38 eqbrtri 2 𝑜 2 𝑜
40 breq1 2 𝑜 = y 2 𝑜 2 𝑜 y 2 𝑜
41 39 40 mpbii 2 𝑜 = y y 2 𝑜
42 30 41 mto ¬ 2 𝑜 = y
43 42 nex ¬ y 2 𝑜 = y
44 2on0 2 𝑜
45 f1cdmsn f : 2 𝑜 1-1 x 2 𝑜 y 2 𝑜 = y
46 44 45 mpan2 f : 2 𝑜 1-1 x y 2 𝑜 = y
47 43 46 mto ¬ f : 2 𝑜 1-1 x
48 47 nex ¬ f f : 2 𝑜 1-1 x
49 brdomi 2 𝑜 x f f : 2 𝑜 1-1 x
50 48 49 mto ¬ 2 𝑜 x
51 breq2 A = x 2 𝑜 A 2 𝑜 x
52 50 51 mtbiri A = x ¬ 2 𝑜 A
53 52 con2i 2 𝑜 A ¬ A = x
54 53 nexdv 2 𝑜 A ¬ x A = x
55 reldom Rel
56 55 brrelex2i 2 𝑜 A A V
57 breng 1 𝑜 V A V 1 𝑜 A f f : 1 𝑜 1-1 onto A
58 32 57 mpan A V 1 𝑜 A f f : 1 𝑜 1-1 onto A
59 56 58 syl 2 𝑜 A 1 𝑜 A f f : 1 𝑜 1-1 onto A
60 29 4 sylibr 2 𝑜 A A
61 56 6 syl 2 𝑜 A A A
62 60 61 mpbid 2 𝑜 A A
63 f1ocnv f : 1 𝑜 1-1 onto A f -1 : A 1-1 onto 1 𝑜
64 f1of1 f -1 : A 1-1 onto 1 𝑜 f -1 : A 1-1 1 𝑜
65 f1eq3 1 𝑜 = f -1 : A 1-1 1 𝑜 f -1 : A 1-1
66 12 65 ax-mp f -1 : A 1-1 1 𝑜 f -1 : A 1-1
67 64 66 sylib f -1 : A 1-1 onto 1 𝑜 f -1 : A 1-1
68 63 67 syl f : 1 𝑜 1-1 onto A f -1 : A 1-1
69 f1cdmsn f -1 : A 1-1 A x A = x
70 68 69 sylan f : 1 𝑜 1-1 onto A A x A = x
71 70 expcom A f : 1 𝑜 1-1 onto A x A = x
72 71 exlimdv A f f : 1 𝑜 1-1 onto A x A = x
73 62 72 syl 2 𝑜 A f f : 1 𝑜 1-1 onto A x A = x
74 59 73 sylbid 2 𝑜 A 1 𝑜 A x A = x
75 54 74 mtod 2 𝑜 A ¬ 1 𝑜 A
76 brsdom 1 𝑜 A 1 𝑜 A ¬ 1 𝑜 A
77 29 75 76 sylanbrc 2 𝑜 A 1 𝑜 A
78 24 77 impbii 1 𝑜 A 2 𝑜 A