Description: The sum of divisors for a prime is P + 1 because the only divisors are 1 and P . (Contributed by Mario Carneiro, 17-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | 1sgmprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn | |
|
2 | 1nn0 | |
|
3 | sgmppw | |
|
4 | 1 2 3 | mp3an13 | |
5 | prmnn | |
|
6 | 5 | nncnd | |
7 | 6 | exp1d | |
8 | 7 | oveq2d | |
9 | 6 | adantr | |
10 | 9 | cxp1d | |
11 | 10 | oveq1d | |
12 | 11 | sumeq2dv | |
13 | 1m1e0 | |
|
14 | 13 | oveq2i | |
15 | 14 | sumeq1i | |
16 | 0z | |
|
17 | 6 | exp0d | |
18 | 17 1 | eqeltrdi | |
19 | oveq2 | |
|
20 | 19 | fsum1 | |
21 | 16 18 20 | sylancr | |
22 | 21 17 | eqtrd | |
23 | 15 22 | eqtrid | |
24 | 23 7 | oveq12d | |
25 | 2 | a1i | |
26 | nn0uz | |
|
27 | 25 26 | eleqtrdi | |
28 | elfznn0 | |
|
29 | expcl | |
|
30 | 6 28 29 | syl2an | |
31 | oveq2 | |
|
32 | 27 30 31 | fsumm1 | |
33 | addcom | |
|
34 | 6 1 33 | sylancl | |
35 | 24 32 34 | 3eqtr4d | |
36 | 12 35 | eqtrd | |
37 | 4 8 36 | 3eqtr3d | |