Metamath Proof Explorer


Theorem 1sgmprm

Description: The sum of divisors for a prime is P + 1 because the only divisors are 1 and P . (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion 1sgmprm P1σP=P+1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 1nn0 10
3 sgmppw 1P101σP1=k=01P1k
4 1 2 3 mp3an13 P1σP1=k=01P1k
5 prmnn PP
6 5 nncnd PP
7 6 exp1d PP1=P
8 7 oveq2d P1σP1=1σP
9 6 adantr Pk01P
10 9 cxp1d Pk01P1=P
11 10 oveq1d Pk01P1k=Pk
12 11 sumeq2dv Pk=01P1k=k=01Pk
13 1m1e0 11=0
14 13 oveq2i 011=00
15 14 sumeq1i k=011Pk=k=00Pk
16 0z 0
17 6 exp0d PP0=1
18 17 1 eqeltrdi PP0
19 oveq2 k=0Pk=P0
20 19 fsum1 0P0k=00Pk=P0
21 16 18 20 sylancr Pk=00Pk=P0
22 21 17 eqtrd Pk=00Pk=1
23 15 22 eqtrid Pk=011Pk=1
24 23 7 oveq12d Pk=011Pk+P1=1+P
25 2 a1i P10
26 nn0uz 0=0
27 25 26 eleqtrdi P10
28 elfznn0 k01k0
29 expcl Pk0Pk
30 6 28 29 syl2an Pk01Pk
31 oveq2 k=1Pk=P1
32 27 30 31 fsumm1 Pk=01Pk=k=011Pk+P1
33 addcom P1P+1=1+P
34 6 1 33 sylancl PP+1=1+P
35 24 32 34 3eqtr4d Pk=01Pk=P+1
36 12 35 eqtrd Pk=01P1k=P+1
37 4 8 36 3eqtr3d P1σP=P+1