Metamath Proof Explorer


Theorem 1sno

Description: Surreal one is a surreal. (Contributed by Scott Fenton, 7-Aug-2024)

Ref Expression
Assertion 1sno 1 s No

Proof

Step Hyp Ref Expression
1 df-1s 1 s = 0 s | s
2 0sno 0 s No
3 snelpwi 0 s No 0 s 𝒫 No
4 2 3 ax-mp 0 s 𝒫 No
5 nulssgt 0 s 𝒫 No 0 s s
6 4 5 ax-mp 0 s s
7 scutcl 0 s s 0 s | s No
8 6 7 ax-mp 0 s | s No
9 1 8 eqeltri 1 s No