Step |
Hyp |
Ref |
Expression |
1 |
|
1stcelcls.1 |
|
2 |
|
simpll |
|
3 |
|
1stctop |
|
4 |
1
|
clsss3 |
|
5 |
3 4
|
sylan |
|
6 |
5
|
sselda |
|
7 |
1
|
1stcfb |
|
8 |
2 6 7
|
syl2anc |
|
9 |
|
simpr2 |
|
10 |
|
simpl |
|
11 |
10
|
ralimi |
|
12 |
9 11
|
syl |
|
13 |
|
fveq2 |
|
14 |
13
|
eleq2d |
|
15 |
14
|
rspccva |
|
16 |
12 15
|
sylan |
|
17 |
|
eleq2 |
|
18 |
|
ineq1 |
|
19 |
18
|
neeq1d |
|
20 |
17 19
|
imbi12d |
|
21 |
1
|
elcls2 |
|
22 |
3 21
|
sylan |
|
23 |
22
|
simplbda |
|
24 |
23
|
ad2antrr |
|
25 |
|
simpr1 |
|
26 |
25
|
ffvelcdmda |
|
27 |
20 24 26
|
rspcdva |
|
28 |
16 27
|
mpd |
|
29 |
|
elin |
|
30 |
29
|
biancomi |
|
31 |
30
|
exbii |
|
32 |
|
n0 |
|
33 |
|
df-rex |
|
34 |
31 32 33
|
3bitr4i |
|
35 |
28 34
|
sylib |
|
36 |
3
|
ad2antrr |
|
37 |
1
|
topopn |
|
38 |
36 37
|
syl |
|
39 |
|
simplr |
|
40 |
38 39
|
ssexd |
|
41 |
|
fvi |
|
42 |
40 41
|
syl |
|
43 |
42
|
ad2antrr |
|
44 |
35 43
|
rexeqtrrdv |
|
45 |
44
|
ralrimiva |
|
46 |
|
fvex |
|
47 |
|
nnenom |
|
48 |
|
eleq1 |
|
49 |
46 47 48
|
axcc4 |
|
50 |
45 49
|
syl |
|
51 |
42
|
feq3d |
|
52 |
51
|
biimpd |
|
53 |
52
|
adantr |
|
54 |
6
|
ad2antrr |
|
55 |
|
simplr3 |
|
56 |
|
eleq2 |
|
57 |
|
fveq2 |
|
58 |
57
|
sseq1d |
|
59 |
58
|
cbvrexvw |
|
60 |
|
sseq2 |
|
61 |
60
|
rexbidv |
|
62 |
59 61
|
bitrid |
|
63 |
56 62
|
imbi12d |
|
64 |
63
|
rspccva |
|
65 |
55 64
|
sylan |
|
66 |
|
simpr |
|
67 |
66
|
ralimi |
|
68 |
9 67
|
syl |
|
69 |
68
|
adantr |
|
70 |
|
simprrr |
|
71 |
|
fveq2 |
|
72 |
71
|
sseq1d |
|
73 |
72
|
imbi2d |
|
74 |
|
fveq2 |
|
75 |
74
|
sseq1d |
|
76 |
75
|
imbi2d |
|
77 |
|
fveq2 |
|
78 |
77
|
sseq1d |
|
79 |
78
|
imbi2d |
|
80 |
|
ssid |
|
81 |
80
|
2a1i |
|
82 |
|
eluznn |
|
83 |
|
fvoveq1 |
|
84 |
|
fveq2 |
|
85 |
83 84
|
sseq12d |
|
86 |
85
|
rspccva |
|
87 |
82 86
|
sylan2 |
|
88 |
87
|
anassrs |
|
89 |
|
sstr2 |
|
90 |
88 89
|
syl |
|
91 |
90
|
expcom |
|
92 |
91
|
a2d |
|
93 |
73 76 79 76 81 92
|
uzind4 |
|
94 |
93
|
com12 |
|
95 |
94
|
ralrimiv |
|
96 |
69 70 95
|
syl2anc |
|
97 |
|
fveq2 |
|
98 |
97 74
|
eleq12d |
|
99 |
|
simplr |
|
100 |
99
|
ad2antlr |
|
101 |
70 82
|
sylan |
|
102 |
98 100 101
|
rspcdva |
|
103 |
102
|
ralrimiva |
|
104 |
|
r19.26 |
|
105 |
96 103 104
|
sylanbrc |
|
106 |
|
ssel2 |
|
107 |
106
|
ralimi |
|
108 |
105 107
|
syl |
|
109 |
|
ssel |
|
110 |
109
|
ralimdv |
|
111 |
108 110
|
syl5com |
|
112 |
111
|
anassrs |
|
113 |
112
|
anassrs |
|
114 |
113
|
reximdva |
|
115 |
65 114
|
syld |
|
116 |
115
|
ralrimiva |
|
117 |
36
|
ad2antrr |
|
118 |
1
|
toptopon |
|
119 |
117 118
|
sylib |
|
120 |
|
nnuz |
|
121 |
|
1zzd |
|
122 |
|
simprl |
|
123 |
39
|
ad2antrr |
|
124 |
122 123
|
fssd |
|
125 |
|
eqidd |
|
126 |
119 120 121 124 125
|
lmbrf |
|
127 |
54 116 126
|
mpbir2and |
|
128 |
127
|
expr |
|
129 |
128
|
imdistanda |
|
130 |
53 129
|
syland |
|
131 |
130
|
eximdv |
|
132 |
50 131
|
mpd |
|
133 |
8 132
|
exlimddv |
|
134 |
133
|
ex |
|
135 |
3
|
ad2antrr |
|
136 |
135 118
|
sylib |
|
137 |
|
1zzd |
|
138 |
|
simprr |
|
139 |
|
simprl |
|
140 |
139
|
ffvelcdmda |
|
141 |
|
simplr |
|
142 |
120 136 137 138 140 141
|
lmcls |
|
143 |
142
|
ex |
|
144 |
143
|
exlimdv |
|
145 |
134 144
|
impbid |
|