Metamath Proof Explorer


Theorem 1stcelcls

Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of Kreyszig p. 30. This proof uses countable choice ax-cc . A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis 1stcelcls.1 X = J
Assertion 1stcelcls J 1 st 𝜔 S X P cls J S f f : S f t J P

Proof

Step Hyp Ref Expression
1 1stcelcls.1 X = J
2 simpll J 1 st 𝜔 S X P cls J S J 1 st 𝜔
3 1stctop J 1 st 𝜔 J Top
4 1 clsss3 J Top S X cls J S X
5 3 4 sylan J 1 st 𝜔 S X cls J S X
6 5 sselda J 1 st 𝜔 S X P cls J S P X
7 1 1stcfb J 1 st 𝜔 P X g g : J k P g k g k + 1 g k x J P x k g k x
8 2 6 7 syl2anc J 1 st 𝜔 S X P cls J S g g : J k P g k g k + 1 g k x J P x k g k x
9 simpr2 J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x k P g k g k + 1 g k
10 simpl P g k g k + 1 g k P g k
11 10 ralimi k P g k g k + 1 g k k P g k
12 9 11 syl J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x k P g k
13 fveq2 k = n g k = g n
14 13 eleq2d k = n P g k P g n
15 14 rspccva k P g k n P g n
16 12 15 sylan J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n P g n
17 eleq2 y = g n P y P g n
18 ineq1 y = g n y S = g n S
19 18 neeq1d y = g n y S g n S
20 17 19 imbi12d y = g n P y y S P g n g n S
21 1 elcls2 J Top S X P cls J S P X y J P y y S
22 3 21 sylan J 1 st 𝜔 S X P cls J S P X y J P y y S
23 22 simplbda J 1 st 𝜔 S X P cls J S y J P y y S
24 23 ad2antrr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n y J P y y S
25 simpr1 J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x g : J
26 25 ffvelrnda J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n g n J
27 20 24 26 rspcdva J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n P g n g n S
28 16 27 mpd J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n g n S
29 elin x g n S x g n x S
30 29 biancomi x g n S x S x g n
31 30 exbii x x g n S x x S x g n
32 n0 g n S x x g n S
33 df-rex x S x g n x x S x g n
34 31 32 33 3bitr4i g n S x S x g n
35 28 34 sylib J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n x S x g n
36 3 ad2antrr J 1 st 𝜔 S X P cls J S J Top
37 1 topopn J Top X J
38 36 37 syl J 1 st 𝜔 S X P cls J S X J
39 simplr J 1 st 𝜔 S X P cls J S S X
40 38 39 ssexd J 1 st 𝜔 S X P cls J S S V
41 fvi S V I S = S
42 40 41 syl J 1 st 𝜔 S X P cls J S I S = S
43 42 ad2antrr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n I S = S
44 43 rexeqdv J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n x I S x g n x S x g n
45 35 44 mpbird J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n x I S x g n
46 45 ralrimiva J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x n x I S x g n
47 fvex I S V
48 nnenom ω
49 eleq1 x = f n x g n f n g n
50 47 48 49 axcc4 n x I S x g n f f : I S n f n g n
51 46 50 syl J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f f : I S n f n g n
52 42 feq3d J 1 st 𝜔 S X P cls J S f : I S f : S
53 52 biimpd J 1 st 𝜔 S X P cls J S f : I S f : S
54 53 adantr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : I S f : S
55 6 ad2antrr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n P X
56 simplr3 J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n x J P x k g k x
57 eleq2 x = y P x P y
58 fveq2 k = j g k = g j
59 58 sseq1d k = j g k x g j x
60 59 cbvrexvw k g k x j g j x
61 sseq2 x = y g j x g j y
62 61 rexbidv x = y j g j x j g j y
63 60 62 syl5bb x = y k g k x j g j y
64 57 63 imbi12d x = y P x k g k x P y j g j y
65 64 rspccva x J P x k g k x y J P y j g j y
66 56 65 sylan J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J P y j g j y
67 simpr P g k g k + 1 g k g k + 1 g k
68 67 ralimi k P g k g k + 1 g k k g k + 1 g k
69 9 68 syl J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x k g k + 1 g k
70 69 adantr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j k g k + 1 g k
71 simprrr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j j
72 fveq2 n = j g n = g j
73 72 sseq1d n = j g n g j g j g j
74 73 imbi2d n = j k g k + 1 g k j g n g j k g k + 1 g k j g j g j
75 fveq2 n = m g n = g m
76 75 sseq1d n = m g n g j g m g j
77 76 imbi2d n = m k g k + 1 g k j g n g j k g k + 1 g k j g m g j
78 fveq2 n = m + 1 g n = g m + 1
79 78 sseq1d n = m + 1 g n g j g m + 1 g j
80 79 imbi2d n = m + 1 k g k + 1 g k j g n g j k g k + 1 g k j g m + 1 g j
81 ssid g j g j
82 81 2a1i j k g k + 1 g k j g j g j
83 eluznn j m j m
84 fvoveq1 k = m g k + 1 = g m + 1
85 fveq2 k = m g k = g m
86 84 85 sseq12d k = m g k + 1 g k g m + 1 g m
87 86 rspccva k g k + 1 g k m g m + 1 g m
88 83 87 sylan2 k g k + 1 g k j m j g m + 1 g m
89 88 anassrs k g k + 1 g k j m j g m + 1 g m
90 sstr2 g m + 1 g m g m g j g m + 1 g j
91 89 90 syl k g k + 1 g k j m j g m g j g m + 1 g j
92 91 expcom m j k g k + 1 g k j g m g j g m + 1 g j
93 92 a2d m j k g k + 1 g k j g m g j k g k + 1 g k j g m + 1 g j
94 74 77 80 77 82 93 uzind4 m j k g k + 1 g k j g m g j
95 94 com12 k g k + 1 g k j m j g m g j
96 95 ralrimiv k g k + 1 g k j m j g m g j
97 70 71 96 syl2anc J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j m j g m g j
98 fveq2 n = m f n = f m
99 98 75 eleq12d n = m f n g n f m g m
100 simplr f : S n f n g n y J j n f n g n
101 100 ad2antlr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j m j n f n g n
102 71 83 sylan J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j m j m
103 99 101 102 rspcdva J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j m j f m g m
104 103 ralrimiva J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j m j f m g m
105 r19.26 m j g m g j f m g m m j g m g j m j f m g m
106 97 104 105 sylanbrc J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j m j g m g j f m g m
107 ssel2 g m g j f m g m f m g j
108 107 ralimi m j g m g j f m g m m j f m g j
109 106 108 syl J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j m j f m g j
110 ssel g j y f m g j f m y
111 110 ralimdv g j y m j f m g j m j f m y
112 109 111 syl5com J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j g j y m j f m y
113 112 anassrs J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j g j y m j f m y
114 113 anassrs J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j g j y m j f m y
115 114 reximdva J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J j g j y j m j f m y
116 66 115 syld J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J P y j m j f m y
117 116 ralrimiva J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n y J P y j m j f m y
118 36 ad2antrr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n J Top
119 1 toptopon J Top J TopOn X
120 118 119 sylib J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n J TopOn X
121 nnuz = 1
122 1zzd J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n 1
123 simprl J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n f : S
124 39 ad2antrr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n S X
125 123 124 fssd J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n f : X
126 eqidd J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n m f m = f m
127 120 121 122 125 126 lmbrf J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n f t J P P X y J P y j m j f m y
128 55 117 127 mpbir2and J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n f t J P
129 128 expr J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n f t J P
130 129 imdistanda J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : S n f n g n f : S f t J P
131 54 130 syland J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f : I S n f n g n f : S f t J P
132 131 eximdv J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f f : I S n f n g n f f : S f t J P
133 51 132 mpd J 1 st 𝜔 S X P cls J S g : J k P g k g k + 1 g k x J P x k g k x f f : S f t J P
134 8 133 exlimddv J 1 st 𝜔 S X P cls J S f f : S f t J P
135 134 ex J 1 st 𝜔 S X P cls J S f f : S f t J P
136 3 ad2antrr J 1 st 𝜔 S X f : S f t J P J Top
137 136 119 sylib J 1 st 𝜔 S X f : S f t J P J TopOn X
138 1zzd J 1 st 𝜔 S X f : S f t J P 1
139 simprr J 1 st 𝜔 S X f : S f t J P f t J P
140 simprl J 1 st 𝜔 S X f : S f t J P f : S
141 140 ffvelrnda J 1 st 𝜔 S X f : S f t J P k f k S
142 simplr J 1 st 𝜔 S X f : S f t J P S X
143 121 137 138 139 141 142 lmcls J 1 st 𝜔 S X f : S f t J P P cls J S
144 143 ex J 1 st 𝜔 S X f : S f t J P P cls J S
145 144 exlimdv J 1 st 𝜔 S X f f : S f t J P P cls J S
146 135 145 impbid J 1 st 𝜔 S X P cls J S f f : S f t J P