| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stcclb.1 |
|
| 2 |
1
|
1stcclb |
|
| 3 |
|
simplr |
|
| 4 |
|
eleq2 |
|
| 5 |
|
sseq2 |
|
| 6 |
5
|
anbi2d |
|
| 7 |
6
|
rexbidv |
|
| 8 |
4 7
|
imbi12d |
|
| 9 |
|
simprrr |
|
| 10 |
|
1stctop |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
1
|
topopn |
|
| 13 |
11 12
|
syl |
|
| 14 |
8 9 13
|
rspcdva |
|
| 15 |
3 14
|
mpd |
|
| 16 |
|
simpl |
|
| 17 |
16
|
reximi |
|
| 18 |
15 17
|
syl |
|
| 19 |
|
eleq2w |
|
| 20 |
19
|
cbvrexvw |
|
| 21 |
18 20
|
sylib |
|
| 22 |
|
rabn0 |
|
| 23 |
21 22
|
sylibr |
|
| 24 |
|
vex |
|
| 25 |
24
|
rabex |
|
| 26 |
25
|
0sdom |
|
| 27 |
23 26
|
sylibr |
|
| 28 |
|
ssrab2 |
|
| 29 |
|
ssdomg |
|
| 30 |
24 28 29
|
mp2 |
|
| 31 |
|
simprrl |
|
| 32 |
|
nnenom |
|
| 33 |
32
|
ensymi |
|
| 34 |
|
domentr |
|
| 35 |
31 33 34
|
sylancl |
|
| 36 |
|
domtr |
|
| 37 |
30 35 36
|
sylancr |
|
| 38 |
|
fodomr |
|
| 39 |
27 37 38
|
syl2anc |
|
| 40 |
10
|
ad3antrrr |
|
| 41 |
|
imassrn |
|
| 42 |
|
forn |
|
| 43 |
42
|
ad2antll |
|
| 44 |
|
simprll |
|
| 45 |
44
|
elpwid |
|
| 46 |
28 45
|
sstrid |
|
| 47 |
43 46
|
eqsstrd |
|
| 48 |
47
|
adantr |
|
| 49 |
41 48
|
sstrid |
|
| 50 |
|
fz1ssnn |
|
| 51 |
|
fof |
|
| 52 |
51
|
ad2antll |
|
| 53 |
52
|
fdmd |
|
| 54 |
50 53
|
sseqtrrid |
|
| 55 |
54
|
adantr |
|
| 56 |
|
sseqin2 |
|
| 57 |
55 56
|
sylib |
|
| 58 |
|
elfz1end |
|
| 59 |
|
ne0i |
|
| 60 |
59
|
adantl |
|
| 61 |
58 60
|
sylan2b |
|
| 62 |
57 61
|
eqnetrd |
|
| 63 |
|
imadisj |
|
| 64 |
63
|
necon3bii |
|
| 65 |
62 64
|
sylibr |
|
| 66 |
|
fzfid |
|
| 67 |
52
|
ffund |
|
| 68 |
|
fores |
|
| 69 |
67 55 68
|
syl2an2r |
|
| 70 |
|
fofi |
|
| 71 |
66 69 70
|
syl2anc |
|
| 72 |
|
fiinopn |
|
| 73 |
72
|
imp |
|
| 74 |
40 49 65 71 73
|
syl13anc |
|
| 75 |
74
|
fmpttd |
|
| 76 |
|
imassrn |
|
| 77 |
43
|
adantr |
|
| 78 |
76 77
|
sseqtrid |
|
| 79 |
|
id |
|
| 80 |
79
|
rgenw |
|
| 81 |
|
eleq2w |
|
| 82 |
81
|
ralrab |
|
| 83 |
80 82
|
mpbir |
|
| 84 |
|
ssralv |
|
| 85 |
78 83 84
|
mpisyl |
|
| 86 |
|
elintg |
|
| 87 |
86
|
ad3antlr |
|
| 88 |
85 87
|
mpbird |
|
| 89 |
|
eqid |
|
| 90 |
|
oveq2 |
|
| 91 |
90
|
imaeq2d |
|
| 92 |
91
|
inteqd |
|
| 93 |
|
simpr |
|
| 94 |
74
|
ralrimiva |
|
| 95 |
92
|
eleq1d |
|
| 96 |
95
|
rspccva |
|
| 97 |
94 96
|
sylan |
|
| 98 |
89 92 93 97
|
fvmptd3 |
|
| 99 |
88 98
|
eleqtrrd |
|
| 100 |
|
fzssp1 |
|
| 101 |
|
imass2 |
|
| 102 |
100 101
|
mp1i |
|
| 103 |
|
intss |
|
| 104 |
102 103
|
syl |
|
| 105 |
|
oveq2 |
|
| 106 |
105
|
imaeq2d |
|
| 107 |
106
|
inteqd |
|
| 108 |
|
peano2nn |
|
| 109 |
108
|
adantl |
|
| 110 |
107
|
eleq1d |
|
| 111 |
110
|
rspccva |
|
| 112 |
94 108 111
|
syl2an |
|
| 113 |
89 107 109 112
|
fvmptd3 |
|
| 114 |
104 113 98
|
3sstr4d |
|
| 115 |
99 114
|
jca |
|
| 116 |
115
|
ralrimiva |
|
| 117 |
|
simprlr |
|
| 118 |
|
eleq2w |
|
| 119 |
|
sseq2 |
|
| 120 |
119
|
anbi2d |
|
| 121 |
120
|
rexbidv |
|
| 122 |
118 121
|
imbi12d |
|
| 123 |
122
|
rspccva |
|
| 124 |
117 123
|
sylan |
|
| 125 |
|
eleq2w |
|
| 126 |
125
|
rexrab |
|
| 127 |
43
|
rexeqdv |
|
| 128 |
|
fofn |
|
| 129 |
128
|
ad2antll |
|
| 130 |
|
sseq1 |
|
| 131 |
130
|
rexrn |
|
| 132 |
129 131
|
syl |
|
| 133 |
127 132
|
bitr3d |
|
| 134 |
133
|
adantr |
|
| 135 |
|
elfz1end |
|
| 136 |
|
fz1ssnn |
|
| 137 |
53
|
adantr |
|
| 138 |
136 137
|
sseqtrrid |
|
| 139 |
|
funfvima2 |
|
| 140 |
67 138 139
|
syl2an2r |
|
| 141 |
140
|
imp |
|
| 142 |
135 141
|
sylan2b |
|
| 143 |
|
intss1 |
|
| 144 |
|
sstr2 |
|
| 145 |
142 143 144
|
3syl |
|
| 146 |
145
|
reximdva |
|
| 147 |
134 146
|
sylbid |
|
| 148 |
126 147
|
biimtrrid |
|
| 149 |
124 148
|
syld |
|
| 150 |
98
|
sseq1d |
|
| 151 |
150
|
rexbidva |
|
| 152 |
151
|
adantr |
|
| 153 |
149 152
|
sylibrd |
|
| 154 |
153
|
ralrimiva |
|
| 155 |
|
nnex |
|
| 156 |
155
|
mptex |
|
| 157 |
|
feq1 |
|
| 158 |
|
fveq1 |
|
| 159 |
158
|
eleq2d |
|
| 160 |
|
fveq1 |
|
| 161 |
160 158
|
sseq12d |
|
| 162 |
159 161
|
anbi12d |
|
| 163 |
162
|
ralbidv |
|
| 164 |
158
|
sseq1d |
|
| 165 |
164
|
rexbidv |
|
| 166 |
165
|
imbi2d |
|
| 167 |
166
|
ralbidv |
|
| 168 |
157 163 167
|
3anbi123d |
|
| 169 |
156 168
|
spcev |
|
| 170 |
75 116 154 169
|
syl3anc |
|
| 171 |
170
|
expr |
|
| 172 |
171
|
adantrrl |
|
| 173 |
172
|
exlimdv |
|
| 174 |
39 173
|
mpd |
|
| 175 |
2 174
|
rexlimddv |
|