Step |
Hyp |
Ref |
Expression |
1 |
|
1stctop |
|
2 |
|
difss |
|
3 |
|
eqid |
|
4 |
3
|
1stcelcls |
|
5 |
2 4
|
mpan2 |
|
6 |
5
|
adantr |
|
7 |
1
|
adantr |
|
8 |
7
|
adantr |
|
9 |
|
toptopon2 |
|
10 |
8 9
|
sylib |
|
11 |
|
simprr |
|
12 |
|
lmcl |
|
13 |
10 11 12
|
syl2anc |
|
14 |
|
nnuz |
|
15 |
|
vex |
|
16 |
15
|
rnex |
|
17 |
|
snex |
|
18 |
16 17
|
unex |
|
19 |
|
resttop |
|
20 |
8 18 19
|
sylancl |
|
21 |
|
toptopon2 |
|
22 |
20 21
|
sylib |
|
23 |
|
1zzd |
|
24 |
|
eqid |
|
25 |
18
|
a1i |
|
26 |
|
ssun2 |
|
27 |
|
vex |
|
28 |
27
|
snss |
|
29 |
26 28
|
mpbir |
|
30 |
29
|
a1i |
|
31 |
|
ffn |
|
32 |
31
|
ad2antrl |
|
33 |
|
dffn3 |
|
34 |
32 33
|
sylib |
|
35 |
|
ssun1 |
|
36 |
|
fss |
|
37 |
34 35 36
|
sylancl |
|
38 |
24 14 25 8 30 23 37
|
lmss |
|
39 |
11 38
|
mpbid |
|
40 |
37
|
ffvelrnda |
|
41 |
|
simprl |
|
42 |
41
|
ffvelrnda |
|
43 |
42
|
eldifbd |
|
44 |
40 43
|
eldifd |
|
45 |
|
difin |
|
46 |
|
frn |
|
47 |
46
|
ad2antrl |
|
48 |
47
|
difss2d |
|
49 |
13
|
snssd |
|
50 |
48 49
|
unssd |
|
51 |
3
|
restuni |
|
52 |
8 50 51
|
syl2anc |
|
53 |
52
|
difeq1d |
|
54 |
45 53
|
eqtr3id |
|
55 |
|
incom |
|
56 |
|
simplr |
|
57 |
|
fss |
|
58 |
41 2 57
|
sylancl |
|
59 |
10 58 11
|
1stckgenlem |
|
60 |
|
kgeni |
|
61 |
56 59 60
|
syl2anc |
|
62 |
55 61
|
eqeltrid |
|
63 |
|
eqid |
|
64 |
63
|
opncld |
|
65 |
20 62 64
|
syl2anc |
|
66 |
54 65
|
eqeltrd |
|
67 |
14 22 23 39 44 66
|
lmcld |
|
68 |
67
|
eldifbd |
|
69 |
13 68
|
eldifd |
|
70 |
69
|
ex |
|
71 |
70
|
exlimdv |
|
72 |
6 71
|
sylbid |
|
73 |
72
|
ssrdv |
|
74 |
3
|
iscld4 |
|
75 |
7 2 74
|
sylancl |
|
76 |
73 75
|
mpbird |
|
77 |
|
elssuni |
|
78 |
77
|
adantl |
|
79 |
3
|
kgenuni |
|
80 |
7 79
|
syl |
|
81 |
78 80
|
sseqtrrd |
|
82 |
3
|
isopn2 |
|
83 |
7 81 82
|
syl2anc |
|
84 |
76 83
|
mpbird |
|
85 |
84
|
ex |
|
86 |
85
|
ssrdv |
|
87 |
|
iskgen2 |
|
88 |
1 86 87
|
sylanbrc |
|