Metamath Proof Explorer


Theorem 1stckgenlem

Description: The one-point compactification of NN is compact. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses 1stckgen.1 φ J TopOn X
1stckgen.2 φ F : X
1stckgen.3 φ F t J A
Assertion 1stckgenlem φ J 𝑡 ran F A Comp

Proof

Step Hyp Ref Expression
1 1stckgen.1 φ J TopOn X
2 1stckgen.2 φ F : X
3 1stckgen.3 φ F t J A
4 simprr φ u 𝒫 J ran F A u ran F A u
5 ssun2 A ran F A
6 lmcl J TopOn X F t J A A X
7 1 3 6 syl2anc φ A X
8 snssg A X A ran F A A ran F A
9 7 8 syl φ A ran F A A ran F A
10 5 9 mpbiri φ A ran F A
11 10 adantr φ u 𝒫 J ran F A u A ran F A
12 4 11 sseldd φ u 𝒫 J ran F A u A u
13 eluni2 A u w u A w
14 12 13 sylib φ u 𝒫 J ran F A u w u A w
15 nnuz = 1
16 simprr φ u 𝒫 J ran F A u w u A w A w
17 1zzd φ u 𝒫 J ran F A u w u A w 1
18 3 ad2antrr φ u 𝒫 J ran F A u w u A w F t J A
19 simplrl φ u 𝒫 J ran F A u w u A w u 𝒫 J
20 19 elpwid φ u 𝒫 J ran F A u w u A w u J
21 simprl φ u 𝒫 J ran F A u w u A w w u
22 20 21 sseldd φ u 𝒫 J ran F A u w u A w w J
23 15 16 17 18 22 lmcvg φ u 𝒫 J ran F A u w u A w j k j F k w
24 imassrn F 1 j ran F
25 ssun1 ran F ran F A
26 24 25 sstri F 1 j ran F A
27 id ran F A u ran F A u
28 26 27 sstrid ran F A u F 1 j u
29 2 frnd φ ran F X
30 24 29 sstrid φ F 1 j X
31 resttopon J TopOn X F 1 j X J 𝑡 F 1 j TopOn F 1 j
32 1 30 31 syl2anc φ J 𝑡 F 1 j TopOn F 1 j
33 topontop J 𝑡 F 1 j TopOn F 1 j J 𝑡 F 1 j Top
34 32 33 syl φ J 𝑡 F 1 j Top
35 fzfid φ 1 j Fin
36 2 ffund φ Fun F
37 fz1ssnn 1 j
38 2 fdmd φ dom F =
39 37 38 sseqtrrid φ 1 j dom F
40 fores Fun F 1 j dom F F 1 j : 1 j onto F 1 j
41 36 39 40 syl2anc φ F 1 j : 1 j onto F 1 j
42 fofi 1 j Fin F 1 j : 1 j onto F 1 j F 1 j Fin
43 35 41 42 syl2anc φ F 1 j Fin
44 pwfi F 1 j Fin 𝒫 F 1 j Fin
45 43 44 sylib φ 𝒫 F 1 j Fin
46 restsspw J 𝑡 F 1 j 𝒫 F 1 j
47 ssfi 𝒫 F 1 j Fin J 𝑡 F 1 j 𝒫 F 1 j J 𝑡 F 1 j Fin
48 45 46 47 sylancl φ J 𝑡 F 1 j Fin
49 34 48 elind φ J 𝑡 F 1 j Top Fin
50 fincmp J 𝑡 F 1 j Top Fin J 𝑡 F 1 j Comp
51 49 50 syl φ J 𝑡 F 1 j Comp
52 topontop J TopOn X J Top
53 1 52 syl φ J Top
54 toponuni J TopOn X X = J
55 1 54 syl φ X = J
56 30 55 sseqtrd φ F 1 j J
57 eqid J = J
58 57 cmpsub J Top F 1 j J J 𝑡 F 1 j Comp u 𝒫 J F 1 j u s 𝒫 u Fin F 1 j s
59 53 56 58 syl2anc φ J 𝑡 F 1 j Comp u 𝒫 J F 1 j u s 𝒫 u Fin F 1 j s
60 51 59 mpbid φ u 𝒫 J F 1 j u s 𝒫 u Fin F 1 j s
61 60 r19.21bi φ u 𝒫 J F 1 j u s 𝒫 u Fin F 1 j s
62 28 61 syl5 φ u 𝒫 J ran F A u s 𝒫 u Fin F 1 j s
63 62 impr φ u 𝒫 J ran F A u s 𝒫 u Fin F 1 j s
64 63 adantr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s
65 simprl φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s 𝒫 u Fin
66 65 elin1d φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s 𝒫 u
67 66 elpwid φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s u
68 simprll φ u 𝒫 J ran F A u w u A w j k j F k w w u
69 68 adantr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s w u
70 69 snssd φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s w u
71 67 70 unssd φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s w u
72 vex u V
73 72 elpw2 s w 𝒫 u s w u
74 71 73 sylibr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s w 𝒫 u
75 65 elin2d φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s Fin
76 snfi w Fin
77 unfi s Fin w Fin s w Fin
78 75 76 77 sylancl φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s w Fin
79 74 78 elind φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s s w 𝒫 u Fin
80 2 ffnd φ F Fn
81 80 ad3antrrr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s F Fn
82 simprrr φ u 𝒫 J ran F A u w u A w j k j F k w k j F k w
83 82 adantr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s k j F k w
84 fveq2 k = n F k = F n
85 84 eleq1d k = n F k w F n w
86 85 rspccva k j F k w n j F n w
87 83 86 sylan φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n j F n w
88 elun2 F n w F n s w
89 87 88 syl φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n j F n s w
90 89 adantlr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n n j F n s w
91 elnnuz n n 1
92 91 anbi1i n j n n 1 j n
93 elfzuzb n 1 j n 1 j n
94 92 93 bitr4i n j n n 1 j
95 simprr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s F 1 j s
96 funimass4 Fun F 1 j dom F F 1 j s n 1 j F n s
97 36 39 96 syl2anc φ F 1 j s n 1 j F n s
98 97 ad3antrrr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s F 1 j s n 1 j F n s
99 95 98 mpbid φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n 1 j F n s
100 99 r19.21bi φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n 1 j F n s
101 elun1 F n s F n s w
102 100 101 syl φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n 1 j F n s w
103 94 102 sylan2b φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n j n F n s w
104 103 anassrs φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n j n F n s w
105 simprl w u A w j k j F k w j
106 105 ad2antlr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s j
107 nnz j j
108 nnz n n
109 uztric j n n j j n
110 107 108 109 syl2an j n n j j n
111 106 110 sylan φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n n j j n
112 90 104 111 mpjaodan φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n F n s w
113 112 ralrimiva φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s n F n s w
114 fnfvrnss F Fn n F n s w ran F s w
115 81 113 114 syl2anc φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s ran F s w
116 elun2 A w A s w
117 116 ad2antlr w u A w j k j F k w A s w
118 117 ad2antlr φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s A s w
119 118 snssd φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s A s w
120 115 119 unssd φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s ran F A s w
121 uniun s w = s w
122 vex w V
123 122 unisn w = w
124 123 uneq2i s w = s w
125 121 124 eqtri s w = s w
126 120 125 sseqtrrdi φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s ran F A s w
127 unieq v = s w v = s w
128 127 sseq2d v = s w ran F A v ran F A s w
129 128 rspcev s w 𝒫 u Fin ran F A s w v 𝒫 u Fin ran F A v
130 79 126 129 syl2anc φ u 𝒫 J ran F A u w u A w j k j F k w s 𝒫 u Fin F 1 j s v 𝒫 u Fin ran F A v
131 64 130 rexlimddv φ u 𝒫 J ran F A u w u A w j k j F k w v 𝒫 u Fin ran F A v
132 131 anassrs φ u 𝒫 J ran F A u w u A w j k j F k w v 𝒫 u Fin ran F A v
133 23 132 rexlimddv φ u 𝒫 J ran F A u w u A w v 𝒫 u Fin ran F A v
134 14 133 rexlimddv φ u 𝒫 J ran F A u v 𝒫 u Fin ran F A v
135 134 expr φ u 𝒫 J ran F A u v 𝒫 u Fin ran F A v
136 135 ralrimiva φ u 𝒫 J ran F A u v 𝒫 u Fin ran F A v
137 7 snssd φ A X
138 29 137 unssd φ ran F A X
139 138 55 sseqtrd φ ran F A J
140 57 cmpsub J Top ran F A J J 𝑡 ran F A Comp u 𝒫 J ran F A u v 𝒫 u Fin ran F A v
141 53 139 140 syl2anc φ J 𝑡 ran F A Comp u 𝒫 J ran F A u v 𝒫 u Fin ran F A v
142 136 141 mpbird φ J 𝑡 ran F A Comp