| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stctop |
|
| 2 |
|
resttop |
|
| 3 |
1 2
|
sylan |
|
| 4 |
|
eqid |
|
| 5 |
4
|
restuni2 |
|
| 6 |
1 5
|
sylan |
|
| 7 |
6
|
eleq2d |
|
| 8 |
7
|
biimpar |
|
| 9 |
|
simpl |
|
| 10 |
|
elinel2 |
|
| 11 |
4
|
1stcclb |
|
| 12 |
9 10 11
|
syl2an |
|
| 13 |
|
simplll |
|
| 14 |
|
elpwi |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
|
ssrest |
|
| 17 |
13 15 16
|
syl2anc |
|
| 18 |
|
ovex |
|
| 19 |
18
|
elpw2 |
|
| 20 |
17 19
|
sylibr |
|
| 21 |
|
vex |
|
| 22 |
|
simpllr |
|
| 23 |
|
restval |
|
| 24 |
21 22 23
|
sylancr |
|
| 25 |
|
simprrl |
|
| 26 |
|
1stcrestlem |
|
| 27 |
25 26
|
syl |
|
| 28 |
24 27
|
eqbrtrd |
|
| 29 |
1
|
ad3antrrr |
|
| 30 |
|
elrest |
|
| 31 |
29 22 30
|
syl2anc |
|
| 32 |
|
r19.29 |
|
| 33 |
|
simprr |
|
| 34 |
33
|
a1d |
|
| 35 |
34
|
ancld |
|
| 36 |
|
elin |
|
| 37 |
35 36
|
imbitrrdi |
|
| 38 |
|
ssrin |
|
| 39 |
37 38
|
anim12d1 |
|
| 40 |
39
|
reximdv |
|
| 41 |
|
vex |
|
| 42 |
41
|
inex1 |
|
| 43 |
42
|
a1i |
|
| 44 |
|
simp-4r |
|
| 45 |
|
elrest |
|
| 46 |
21 44 45
|
sylancr |
|
| 47 |
|
eleq2 |
|
| 48 |
|
sseq1 |
|
| 49 |
47 48
|
anbi12d |
|
| 50 |
49
|
adantl |
|
| 51 |
43 46 50
|
rexxfr2d |
|
| 52 |
40 51
|
sylibrd |
|
| 53 |
52
|
expr |
|
| 54 |
53
|
com23 |
|
| 55 |
54
|
imim2d |
|
| 56 |
55
|
imp4b |
|
| 57 |
|
eleq2 |
|
| 58 |
|
elin |
|
| 59 |
57 58
|
bitrdi |
|
| 60 |
|
sseq2 |
|
| 61 |
60
|
anbi2d |
|
| 62 |
61
|
rexbidv |
|
| 63 |
59 62
|
imbi12d |
|
| 64 |
56 63
|
syl5ibrcom |
|
| 65 |
64
|
expimpd |
|
| 66 |
65
|
rexlimdva |
|
| 67 |
32 66
|
syl5 |
|
| 68 |
67
|
expd |
|
| 69 |
68
|
impr |
|
| 70 |
69
|
adantrrl |
|
| 71 |
31 70
|
sylbid |
|
| 72 |
71
|
ralrimiv |
|
| 73 |
|
breq1 |
|
| 74 |
|
rexeq |
|
| 75 |
74
|
imbi2d |
|
| 76 |
75
|
ralbidv |
|
| 77 |
73 76
|
anbi12d |
|
| 78 |
77
|
rspcev |
|
| 79 |
20 28 72 78
|
syl12anc |
|
| 80 |
12 79
|
rexlimddv |
|
| 81 |
8 80
|
syldan |
|
| 82 |
81
|
ralrimiva |
|
| 83 |
|
eqid |
|
| 84 |
83
|
is1stc2 |
|
| 85 |
3 82 84
|
sylanbrc |
|