Metamath Proof Explorer


Theorem 1stcrestlem

Description: Lemma for 1stcrest . (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion 1stcrestlem B ω ran x B C ω

Proof

Step Hyp Ref Expression
1 ordom Ord ω
2 reldom Rel
3 2 brrelex2i B ω ω V
4 elong ω V ω On Ord ω
5 3 4 syl B ω ω On Ord ω
6 1 5 mpbiri B ω ω On
7 ondomen ω On B ω B dom card
8 6 7 mpancom B ω B dom card
9 eqid x B C = x B C
10 9 dmmptss dom x B C B
11 ssnum B dom card dom x B C B dom x B C dom card
12 8 10 11 sylancl B ω dom x B C dom card
13 funmpt Fun x B C
14 funforn Fun x B C x B C : dom x B C onto ran x B C
15 13 14 mpbi x B C : dom x B C onto ran x B C
16 fodomnum dom x B C dom card x B C : dom x B C onto ran x B C ran x B C dom x B C
17 12 15 16 mpisyl B ω ran x B C dom x B C
18 ctex B ω B V
19 ssdomg B V dom x B C B dom x B C B
20 18 10 19 mpisyl B ω dom x B C B
21 domtr dom x B C B B ω dom x B C ω
22 20 21 mpancom B ω dom x B C ω
23 domtr ran x B C dom x B C dom x B C ω ran x B C ω
24 17 22 23 syl2anc B ω ran x B C ω