Metamath Proof Explorer


Theorem 1strwun

Description: A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses 1str.g G = Base ndx B
1strwun.u φ U WUni
1strwun.o φ ω U
Assertion 1strwun φ B U G U

Proof

Step Hyp Ref Expression
1 1str.g G = Base ndx B
2 1strwun.u φ U WUni
3 1strwun.o φ ω U
4 df-base Base = Slot 1
5 2 3 wunndx φ ndx U
6 4 2 5 wunstr φ Base ndx U
7 1 2 6 1strwunbndx φ B U G U