Metamath Proof Explorer


Theorem 1strwunbndx

Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses 1str.g G = Base ndx B
1strwun.u φ U WUni
1strwunbndx.b φ Base ndx U
Assertion 1strwunbndx φ B U G U

Proof

Step Hyp Ref Expression
1 1str.g G = Base ndx B
2 1strwun.u φ U WUni
3 1strwunbndx.b φ Base ndx U
4 2 adantr φ B U U WUni
5 3 adantr φ B U Base ndx U
6 simpr φ B U B U
7 4 5 6 wunop φ B U Base ndx B U
8 4 7 wunsn φ B U Base ndx B U
9 1 8 eqeltrid φ B U G U