Metamath Proof Explorer


Theorem 1stval

Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion 1stval 1 st A = dom A

Proof

Step Hyp Ref Expression
1 sneq x = A x = A
2 1 dmeqd x = A dom x = dom A
3 2 unieqd x = A dom x = dom A
4 df-1st 1 st = x V dom x
5 snex A V
6 5 dmex dom A V
7 6 uniex dom A V
8 3 4 7 fvmpt A V 1 st A = dom A
9 fvprc ¬ A V 1 st A =
10 snprc ¬ A V A =
11 10 biimpi ¬ A V A =
12 11 dmeqd ¬ A V dom A = dom
13 dm0 dom =
14 12 13 eqtrdi ¬ A V dom A =
15 14 unieqd ¬ A V dom A =
16 uni0 =
17 15 16 eqtrdi ¬ A V dom A =
18 9 17 eqtr4d ¬ A V 1 st A = dom A
19 8 18 pm2.61i 1 st A = dom A