Metamath Proof Explorer


Theorem 1to2vfriswmgr

Description: Every friendship graph with one or two vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017) (Revised by AV, 31-Mar-2021)

Ref Expression
Hypotheses 3vfriswmgr.v V = Vtx G
3vfriswmgr.e E = Edg G
Assertion 1to2vfriswmgr A X V = A V = A B G FriendGraph h V v V h v h E ∃! w V h v w E

Proof

Step Hyp Ref Expression
1 3vfriswmgr.v V = Vtx G
2 3vfriswmgr.e E = Edg G
3 1vwmgr A X V = A h V v V h v h E ∃! w V h v w E
4 3 a1d A X V = A G FriendGraph h V v V h v h E ∃! w V h v w E
5 4 expcom V = A A X G FriendGraph h V v V h v h E ∃! w V h v w E
6 simpr B V A B A X A X
7 simpll B V A B A X B V
8 simplr B V A B A X A B
9 6 7 8 3jca B V A B A X A X B V A B
10 1 eqeq1i V = A B Vtx G = A B
11 10 biimpi V = A B Vtx G = A B
12 nfrgr2v A X B V A B Vtx G = A B G FriendGraph
13 9 11 12 syl2anr V = A B B V A B A X G FriendGraph
14 df-nel G FriendGraph ¬ G FriendGraph
15 13 14 sylib V = A B B V A B A X ¬ G FriendGraph
16 15 pm2.21d V = A B B V A B A X G FriendGraph h V v V h v h E ∃! w V h v w E
17 16 expcom B V A B A X V = A B G FriendGraph h V v V h v h E ∃! w V h v w E
18 17 ex B V A B A X V = A B G FriendGraph h V v V h v h E ∃! w V h v w E
19 18 com23 B V A B V = A B A X G FriendGraph h V v V h v h E ∃! w V h v w E
20 ianor ¬ B V A B ¬ B V ¬ A B
21 prprc2 ¬ B V A B = A
22 nne ¬ A B A = B
23 preq2 B = A A B = A A
24 23 eqcoms A = B A B = A A
25 dfsn2 A = A A
26 24 25 eqtr4di A = B A B = A
27 22 26 sylbi ¬ A B A B = A
28 21 27 jaoi ¬ B V ¬ A B A B = A
29 20 28 sylbi ¬ B V A B A B = A
30 29 eqeq2d ¬ B V A B V = A B V = A
31 30 5 syl6bi ¬ B V A B V = A B A X G FriendGraph h V v V h v h E ∃! w V h v w E
32 19 31 pm2.61i V = A B A X G FriendGraph h V v V h v h E ∃! w V h v w E
33 5 32 jaoi V = A V = A B A X G FriendGraph h V v V h v h E ∃! w V h v w E
34 33 impcom A X V = A V = A B G FriendGraph h V v V h v h E ∃! w V h v w E